Présentation

Article

1 - GÉNÉRALITÉS SUR L’APPROCHE DES MÉTHODES

  • 1.1 - Détectabilité des éléments
  • 1.2 - Localisation spatiale de l’analyse
  • 1.3 - Limite de détection
  • 1.4 - Dégâts d’irradiation
  • 1.5 - Effets de charge sur les isolants soumis à un bombardement de particules chargées

2 - MICROANALYSE FONDÉE SUR L’IRRADIATION AUX ÉLECTRONS

3 - MICROANALYSE FONDÉE SUR L’IRRADIATION AUX IONS

4 - MICROANALYSE FONDÉE SUR L’IRRADIATION AUX PHOTONS

5 - CONCLUSION

Article de référence | Réf : P3795 v2

Microanalyse fondée sur l’irradiation aux électrons
Méthode de microanalyse des surfaces et couches minces

Auteur(s) : Guy BLAISE

Relu et validé le 05 janv. 2014

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article traite des méthodes de microanalyse pour déterminer la composition chimique élémentaire des surfaces et des couches minces. Il explore l'utilisation de particules énergétiques primaires comme les électrons, photons, neutrons, protons ou ions lourds pour sonder les matériaux et analyser les interactions avec les atomes. Les différentes techniques de microanalyse sont regroupées en trois catégories selon les particules primaires utilisées : l’irradiation aux électrons, aux ions et aux photons. L'article détaille les aspects de détectabilité des éléments, la localisation spatiale de l’analyse, les limites de détection, les dégâts d’irradiation, et les effets de charge sur les isolants soumis à un bombardement​.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Guy BLAISE : Professeur à l’Université Paris-Sud

INTRODUCTION

La microanalyse se propose de déterminer la composition chimique élémentaire d’un volume de matière aussi petit que possible. Le principe consiste à sonder cette matière au moyen d’un pinceau plus ou moins délié de particules énergétiques dites primaires – électrons, photons, neutrons, protons ou ions lourds – et à analyser en retour les effets de leur interaction avec les atomes du solide. Ces effets découlent d’un transfert de l’énergie des particules primaires aux atomes du solide au cours de collisions qui, dans la plupart des cas, peuvent être considérées comme binaires.

À partir de ce transfert d’énergie, deux voies principales d’identification chimique d’un atome sont offertes. La première consiste à relier la perte d’énergie de la particule primaire à une interaction caractéristique de l’atome cible et la seconde à suivre les effets de la relaxation de l’atome excité. Cette relaxation s’accompagne, en effet, d’une émission de particules secondaires dont la nature et l’énergie permettent d’identifier l’atome émetteur. Il y a ainsi deux grandes approches de la microanalyse, très complémentaires par certains côtés.

Issue des très nombreuses méthodes de caractérisation chimique des éléments qui se sont développées sur les traces de la microsonde électronique de Castaing  depuis une trentaine d’années, la microanalyse apparaît aujourd’hui comme un des outils majeurs de la connaissance de la matière condensée, dans de multiples domaines de la science. Lorsqu’elle est pratiquée de proche en proche par balayage du faisceau de particules primaires sur la surface de l’échantillon, elle permet d’établir une cartographie chimique de celui-ci.

Les méthodes de microanalyse évoquées dans cet article ont été regroupées en trois grandes familles, composées d’après la nature des particules primaires utilisées (tableaux 1, 2 et 3). Ces méthodes ont fait l’objet de très nombreuses descriptions individuelles que l’on retrouvera notamment dans les articles de ce traité :

Nous renvoyons le lecteur à ces articles pour ce qui est du principe, de la technique instrumentale, de la méthodologie et des principaux domaines d’application de ces méthodes. L’approche développée présentement vient en complément des descriptions précédentes. Elle vise à donner à l’utilisateur les éléments de jugement qui lui permettront de choisir, sur des bases simples et dépouillées de tous les effets secondaires, la méthode qui répondra le mieux au problème d’analyse auquel il est confronté, à le prévenir de ce qu’il est en droit d’en attendre, des difficultés auxquelles il s’expose compte tenu de la nature de ses échantillons et de la manière de conduire une expérimentation sur plusieurs méthodes de façon à cerner au mieux le problème posé.

Dans cet ordre d’idée, le premier point examiné est celui de la détectabilité des éléments pour permettre d’évaluer le degré de facilité avec lequel un élément pourra être analysé. Suivra l’étude de la localisation spatiale (localisation latérale et en profondeur), de la sensibilité, des dégâts causés par l’irradiation et des effets de charge sur les échantillons isolants.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-p3795


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Microanalyse fondée sur l’irradiation aux électrons

On trouvera le descriptif des principes physiques mis en jeu et des méthodes d’analyse dans les articles suivants :

2.1 Considérations physiques

Les méthodes de microanalyse qui utilisent des électrons pour sonder la matière reposent sur l’interaction inélastique de ceux-ci avec les atomes cibles (tableau 1). L’identification de ces atomes consiste donc à exploiter les pertes inélastiques d’énergie subies par les électrons ou à profiter de la relaxation des atomes cibles excités, sous forme d’émission X et d’émission d’électrons Auger. Les pertes inélastiques d’énergie des électrons primaires sont liées à l’ionisation des orbitales atomiques.

D’après la théorie de Bethe , la section efficace...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Microanalyse fondée sur l’irradiation aux électrons
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HEINRICH KURT (J.F.) -   Electron Beam X-Ray Microanalysis.  -  Ed. Van Nostrand Reinhold Company (1981).

  • (2) - POWEL (C.J.) -   *  -  SEM IV/1649-64 (1984).

  • (3) - CAZAUX (J.) -   Applications of Surface Science.  -  20, p. 457-71 (1985).

  • (4) - MITIO INSKUTI -   *  -  Rev. of Modern Physics, vol. 43, no 3, p. 297 (1971).

  • (5) - DAVIS (L.E.), MAC DONALD (N.C.), PALMBERG (P.W.), RIACH (G.E.), WEBER (R.E.) -   Handbook of Auger Electron Spectroscopy.  -  Physical Electronics Industries Inc., Eden prairie, MN (1976).

  • (6) - FELDMAN (L.C.), MAYER (J.N.) -   Fundamentals of surface and thin film analysis.  -  North Holland (1986).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS