Présentation

Article

1 - VÉRINS À MOUVEMENT LINÉAIRE

2 - COMMENT COMMANDER UN VÉRIN PNEUMATIQUE

3 - DIFFÉRENTS TYPES D’AMORTISSEMENT

4 - DÉTECTION DES FINS DE COURSE

5 - MATÉRIAUX UTILISÉS

  • 5.1 - Matériaux utilisés pour les joints
  • 5.2 - Matériaux utilisés pour les vérins

6 - DIMENSIONNEMENT DES VÉRINS

7 - CONSOMMATION DES VÉRINS

8 - CONCLUSION

9 - GLOSSAIRE

10 - SYMBOLES

Article de référence | Réf : BM6100 v1

Matériaux utilisés
Automatisation pneumatique - Vérins pneumatiques linéaires et rotatifs

Auteur(s) : Frédéric MOULIN

Date de publication : 10 août 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article traite des différentes technologies de vérins pneumatiques actuellement utilisés dans l’industrie : quels sont les différents types de vérins ? A quelles applications sont-ils adaptés ? Quels sont les matériaux utilisés pour leur fabrication ? En plus d’un état des lieux technologique, sont abordés les différents aspects nécessaires à la mise en œuvre de ces vérins : organes de commande, gestion des vitesses et des décélérations, et accessoires nécessaires à leur intégration dans une architecture mécanique ou encore d’automatisme. Pour conclure, il est question des méthodes de dimensionnement des vérins et des calculs de consommation d’air comprimé.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Pneumatic Automation - Linear and rotary pneumatic drives

This article is about the different pneumatic drives technologies used in the manufacturing industry these days: what are the different types of cylinders? For which application? Which materials are used to produce them? Besides this technical inventory, this article focuses on different topics related to the use of pneumatic cylinders: Motion Control, Speed and deceleration control, and needed accessories for mechanical and logic integration. As a conclusion, this article will also mention dimensioning and air consumption.

Auteur(s)

INTRODUCTION

Le vérin pneumatique est un organe clé utilisé dans l’automatisme industriel. À partir de la force de l’air comprimé, il permet de réaliser des mouvements rapides et puissants. Grâce à sa conception très simple, le vérin pneumatique est d'un faible coût par rapport à d’autres technologies de transmissions de puissance, il est de plus particulièrement léger ce qui le rend adapté à des applications mobiles ou embarquées.

Les concepts de bases ainsi que les termes utilisés dans cet article permettent de définir les principes de fonctionnement, d’utilisation et d’activation des vérins pneumatiques. Cet article aborde les différents designs et les principes de fonctionnement.

Nous pouvons distinguer différents types de vérins en nous appuyant sur les critères suivants :

  • conception : cylindrique, à profilé, à tirant, compact, en soufflet, ou autres types de conception,

  • type de mouvements : linéaire, rotatif, ou encore combinaison des deux,

  • fonction : préhension, manipulation, mouvement de charge lourdes, etc.

En plus de ces critères, il est possible d’ajouter d’autres moyens de différencier les vérins, comme par exemple, la vitesse (vérins à faible vitesse), les environnements spécifiques (production en salle blanche, vérins utilisés dans l’industrie minière…). Dans ces cas, les généralisations restent difficiles, car les utilisateurs énoncent des points de vue divergents.

Pour cet article, la première distinction est faite entre les vérins linéaires et les vérins rotatifs. Chaque type de fonction et de conception est ensuite détaillé.

Le lecteur trouvera en fin d'article un glossaire et un tableau des symboles utilisés.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

drives   |   motion   |   automation   |   transmission

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm6100


Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Matériaux utilisés

La transmission de puissance pneumatique est une technologie simple et dont les prix ont fortement baissé ces dernières décennies. Cette réduction des coûts a été possible en diminuant les quantités de matière utilisée pour fabriquer les vérins, mais aussi en choisissant des matériaux plus économiques et plus faciles à produire. Ces optimisations ne doivent pas pour autant remettre en cause la durabilité des composants pneumatiques. Les matériaux doivent être assez résistants pour assurer une durée de vie de plusieurs millions de cycles dans différents environnements de production.

5.1 Matériaux utilisés pour les joints

Pour la fabrication des joints des vérins, on utilise principalement l’un des trois matériaux suivants :

  • le polyuréthane (PUR),

  • le nitrile (NBR),

  • les fluoroélastmères (FPM/FKM).

  • Caractéristiques du polyuréthane :

    • extrêmement résistant à l’usure,

    • bonne résistance aux huiles minérales, aux graisses, au pétrole et à de nombreux solvants,

    • plage de température de − 30 à 90 °C.

    La plupart des joints dynamiques sont fabriqués avec du PUR.

  • Caractéristiques du nitrile :

    • très bonne résistance à l’usure (mais moins bonne que le PUR),

    • résistance moyenne aux huiles, aux graisses,

    • plage de température de − 30 à 100 °C.

    Le nitrile est fréquemment utilisé pour la fabrication des joints statiques.

  • Caractéristiques des fluoroélatomères :

    • résistance moyenne à l’usure,

    • excellente résistance aux huiles, aux graisses et à de nombreux produits chimiques,

    • plage de température de − 20 à 200 °C.

    Les joints en fluoroélastomère sont utilisés dans les applications à haute température, ou à proximité des produits chimiques.

HAUT DE PAGE

5.2 Matériaux...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Matériaux utilisés
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HESSE (S.) -   Rationaliser grâce à la manipulation.  -  Version anglaise : https://frscribe.com/doc/7339269/99-Pneumatic-Applications (1994).

  • (2) - CHEVALIER (A.) -   Guide du dessinateur industriel.  -  Hachette (Édition 2021-2002).

NORMES

  • Transmissions pneumatiques – Vérins à simple tige, série 1 000 kPa (10 bar), alésages de 8 mm à 25 mm – Dimensions de base et de montage. - ISO 6432 - novembre 2015

  • Transmissions pneumatiques – Vérins avec fixations détachables, série 1 000 kPa (10 bar), alésages de 32 mm à 320 mm – Dimensions de base, des fixations et des accessoires. - ISO 15552 - juin 2018

  • Transmissions pneumatiques – Vérins – Vérins compacts, série 1 000 kPa (10 bar), alésages de 20 mm à 100 mm. - ISO 21287 - juillet 2005

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(214 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS