Présentation
EnglishRÉSUMÉ
Pour pallier la fragilité, la complexité et le coût des pièces céramiques, l'industrie a développé les dépôts céramiques sur des pièces métalliques d'épaisseur de quelques millimètres à plusieurs mètres. Les dépôts minces (inférieurs à quelques millimètres) sont réalisés soit par vaporisation physique assistée par électrons, ions, plasma, laser, soit par dépôts chimiques en phase vapeur assistés ou non par plasma. Les dépôts épais (de 50 à quelques millimètres) consistent à projeter des particules de quelques dizaines de millimètres par flammes ou plasmas thermiques. Quelques exemples d'applications, liées aux propriétés des dépôts obtenus, sont présentés. Après une brève évaluation des coûts relatifs aux différents dépôts, les perspectives de développement sont discutées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre FAUCHAIS : Professeur émérite Centre européen de la céramique, SPCTS UMR CNRS 7315, université de Limoges
INTRODUCTION
En général un dépôt sur la surface d'une pièce est utilisé pour lui conférer une fonctionnalité particulière qu'elle n'a pas sans celui-ci. Les dépôts céramiques sont utilisés pour donner : une plus grande dureté, des propriétés isolantes tant du point de vue électrique que thermique, une meilleure résistance à l'usure, une résistance chimique supérieure, en particulier à la corrosion, une imperméabilité aux liquides ou aux gaz, un effet décoratif… Naturellement le choix du dépôt et de sa méthode de déposition dépendent de nombreux paramètres tels que : l'épaisseur, le matériau dont est constitué le substrat et ses propriétés, en particulier son coefficient de dilatation, la géométrie de l'aire à couvrir. La fonction que doit remplir le dépôt est également importante dans le choix (par exemple contre l'usure un dépôt épais est de loin préférable à un dépôt mince). Il en va de même des conditions d'utilisation du composant, notamment l'atmosphère et la température de service… tout cela bien entendu en prenant en considération les coûts de déposition par rapport au gain apporté par le dépôt. De plus il est possible, sous certaines conditions, de rendre étanches les dépôts céramiques épais qui ont souvent des porosités ouvertes débouchantes, c'est-à-dire des sortes de canaux traversant toute l'épaisseur du dépôt.
Si les céramiques existent depuis le Paléolithique (≍ 29 000 av. J.-C.), les céramiques techniques se sont développées au XX e siècle. Les dépôts céramiques ne sont apparus qu'au cours de la deuxième moitié du XX e siècle, même si les techniques de dépôts des métaux ont vu le jour à la fin du XIX e pour les dépôts métalliques par PVD (Physical Vapor Deposition) et CVD (Chemical Vapor Deposition). Au début du XX e est apparue la projection flamme et dans les années 1950 les dépôts plasma. Les techniques d'évaporation de PVD et de CVD ainsi que de projection thermique ont vraiment été industrialisées dans les années 1960-1970.
Les dépôts céramiques dont il sera question dans ce qui suit sont soit des dépôts épais (de 50 μm à quelques mm) déposés par projection thermique (plasma ou flamme), soit des dépôts minces (quelques dixièmes à quelques dizaines de μm) obtenus :
-
par vapeur chimique CVD (Chemical Vapor Deposition), éventuellement assistée par plasma (Plasma Enhanced CVD), aussi appelé « PACVD » (Plasma Assisted CVD). Par ces méthodes, des dépôts de plusieurs mm ont été réalisés, mais en routine ils sont limités à 50 μm ;
-
par vapeur physique PVD (dépôt physique en phase vapeur : Physical Vapor Deposition), PVD assisté par un faisceau d'électrons (EB-PVD : Electron Beam PVD), par laser (PLD : Pulsed Laser Deposition). Les dépôts physiques sont en général limités à 5 μm.
Quelle que soit leur application dans les secteurs de l'aéronautique, de l'automobile, de la métallurgie, de la mécanique, de la chimie, de l'électronique et de l'optique…, les matériaux céramiques les plus déposés sont les oxydes, les nitrures, les carbonitrures, et les borures.
Nous présenterons donc successivement les principales propriétés des céramiques les plus utilisées dans les dépôts minces puis dans les dépôts épais avec à chaque fois les techniques de dépôts. Enfin, la préparation des substrats et les différents usages des dépôts et enfin quelques notions de coûts seront discutées.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Traitements des métaux > Traitements des métaux : revêtements non métalliques > Dépôts céramiques par PVD ou CVD assistées ou par projection plasma > Dépôts minces de céramiques
Accueil > Ressources documentaires > Matériaux > Verres et céramiques > Céramiques : propriétés et élaboration > Dépôts céramiques par PVD ou CVD assistées ou par projection plasma > Dépôts minces de céramiques
Cet article fait partie de l’offre
Frottement, usure et lubrification
(92 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Dépôts minces de céramiques
3.1 Production des dépôts
Quelle que soit la technique utilisée, la préparation du substrat, décrite au § 2, est indispensable. De plus, la pièce à revêtir doit être protégée de l'oxygène ou de l'air si le dépôt n'est pas effectué dans les quelques de dizaines de minutes qui suivent la préparation du substrat, ce délai étant d'autant plus court que la pièce est chaude.
Les techniques d'évaporation surtout PVD ou CVD, assistées ou non, sont le point de départ des dépôts minces céramiques [3] [11]. L'inconvénient majeur de la CVD conventionnelle est la nécessité de travailler avec la pièce à revêtir entre 800 et 1 100 oC, ce qui rend le procédé complexe. Cependant, les procédés CVD assistés par plasma permettent d'abaisser les températures à 400-600 oC pour les dépôts céramiques. Par contre avec la PVD, en particulier lorsqu'elle est assistée, on peut déposer sur des substrats en polymères dont certains ne peuvent être utilisés au-delà de 50 oC.
HAUT DE PAGE3.1.1 Procédé PVD (Physical Vapor Deposition)
Comme pour la projection plasma, il s'agit d'un procédé « ligne de visée » qui a été introduit industriellement au début des années 1980.
Les techniques usuelles de PVD diffèrent entre elles par :
-
le mode de production de la vapeur, ou plus précisément pour celles décrites ci-dessous, de petits « paquets » de matière (pulvérisation) qui conservent les propriétés de la matière ainsi « arrachée » au matériau à déposer ;
-
la présence...
Cet article fait partie de l’offre
Frottement, usure et lubrification
(92 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Dépôts minces de céramiques
BIBLIOGRAPHIE
-
(1) - Guide to engineered Materials. - Advanced Materials & Processes, 12, p. 19-178 (1999).
-
(2) - Handbook of thermal spray technology. - Sections Introduction to applications for thermal spray processing and Selected applications (ed.) DAVIS (J.R.) (pub.) ASM Int. Materials Park, OH, USA (2004).
-
(3) - BUNSHAH (R.F.) - Handbook of hard coatings : deposition technologies. - Properties and Applications, Elsevier Science (2001).
-
(4) - STINTON (D.P.), BESMANN (T.M.), LOWDEN (R.A.), SHELDON (B.W.) - Vapor deposition, in ceramic and glasses. - Engineered Materials Handbook, Pub. ASM Int. Materials PARK, OH, USA, 4, p. 215-222 (1991).
-
(5) - MOVCHAN (B.A.), DEMCHISIN (A.V.) - Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide, - Phys. Met. Metallogr., 28, p. 83-85 (1969).
-
(6) - THORNTON (J.A.) - High...
Cet article fait partie de l’offre
Frottement, usure et lubrification
(92 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive