Article de référence | Réf : BM5121 v1

Sources mécaniques d’excitations permanentes
Dynamique des rotors en torsion - Types d’excitations permanentes

Auteur(s) : Henri BLANC

Date de publication : 10 janv. 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Henri BLANC : Ingénieur des arts et métiers - Docteur-ingénieur agrégé en mécanique - Professeur à l’ENSAM Bordeaux

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Il est bon de rappeler l’évidence suivant laquelle, si un système réel vibre de manière permanente, c’est qu’il est excité. Nous nous intéressons dans ce paragraphe, aux excitations permanentes dont la variation au cours du temps est périodique. Par rapport à la partie de l’installation modélisée, ces excitations sont extérieures et, elles doivent apporter de manière périodique une quantité d’énergie mécanique qui sera, dans le même temps, transformée en chaleur par les phénomènes dissipatifs. Ces derniers sont toujours présents dans la réalité, aussi faibles soient-ils. Si le type choisi d’analyse conduit à utiliser un modèle linéaire, il est important de décomposer l’excitation réelle en série de Fourier. Le caractère linéaire du modèle nous permettra, en utilisant le principe de superposition, de reconstruire la réponse globale en vibration, à partir des réponses obtenues pour chaque harmonique de l’excitation.

Pour un modèle linéaire, toute excitation peut donc être représentée par une somme d’excitations sinusoïdales élémentaires ou harmoniques. Chacune d’elle, notée F q est définie par sa pulsation Ω , son amplitude C q et, sa phase Φ q mesurée par rapport à une origine des temps donnée.

Elle s’écrit sous la forme :

F q = C q cos( Ω q t+ Φ q )

avec :

Ω q
 : 

Ω
 : 
(rad/s) vitesse de rotation du rotor
q
 : 
ordre de l’harmonique.

Parmi ces trois caractéristiques, la pulsation est de loin la plus importante dans la pratique. Il est assez facile de l’identifier et, sa valeur sera définie dans chaque cas abordé. Par contre, la détermination des amplitudes et phases des excitations est en général un travail complexe qui peut demander une modélisation propre à chaque cas rencontré et dont les résultats demandent aussi à être confirmés par l’expérience.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm5121


Cet article fait partie de l’offre

Fonctions et composants mécaniques

(215 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Sources mécaniques d’excitations permanentes

1.1 Système bielle-manivelle

La bielle exerce sur le maneton du vilebrequin un effort cyclique dont la composante tangentielle donne un couple C qui peut se décomposer en une composante C p due à l’action de la pression sur le piston et une composante C i due aux quantités d’accélération de la bielle et du piston. On a :

C = Cp + Ci

avec :

Cp
 : 
couple dû aux gaz
Ci
 : 
couple dû aux inerties.

Pour une vitesse de rotation constante Ω du vilebrequin exprimée en radian par seconde, on peut calculer les périodes τ des deux composantes du couple total. On obtient :

  • pour le couple Cp , couple dû aux gaz,

    τ p = 2kπ Ω

    avec :

    k = 1
     : 
    pour un moteur à deux temps ou un compresseur et k = 2 pour un moteur à quatre temps.
  • pour le couple C i , couple dû aux inerties,

    τ i = 2π Ω
HAUT DE PAGE

1.1.1 Propriétés du couple Cp dû aux gaz

La décomposition en série de Fourier du couple C p s’écrit :

C p ( t τ ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(215 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Sources mécaniques d’excitations permanentes
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(215 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS