Présentation
EnglishRÉSUMÉ
Les anneaux de garnitures peuvent vibrer et osciller, ils dissipent de la chaleur par frottement. Tout d’abord, cet article présente l’analyse et la modélisation non linéaire du comportement dynamique des différents agencements de garnitures pour liquides. Un modèle linéaire simplifié est ensuite décrit et ses résultats sont résumés. Il développe ensuite l’analyse et la modélisation de la dissipation thermique dans l’interface, du transfert de chaleur par conduction dans les anneaux du joint et de l’échange de chaleur par convection entre les parois des anneaux et les fluides environnants. Deux approches sont comparées au moyen d’études de cas caractéristiques de garnitures pour de l’eau et de l’huile.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Noël BRUNETIERE : Chargé de Recherche au CNRS - Institut P’, UPR CNRS 3346, Poitiers, France
-
Bernard TOURNERIE : Professeur émérite, Université de Poitiers - Institut P’, UPR CNRS 3346, Poitiers, France
INTRODUCTION
Les articles [BM 5425] et [BM 5426] abordent la technologie des garnitures d’étanchéité, tandis que les articles [BM 5421] et [BM 5422] présentent plus particulièrement la théorie de la lubrification des faces de frottement en l’illustrant par des cas pratiques simples.
Le fonctionnement souhaitable d’une garniture d’étanchéité résulte de l’ajustement de la distance entre les faces de frottement, assurant un compromis entre une faible fuite et un faible frottement. Cela implique de contrôler les déplacements relatifs des anneaux et les déformations de leurs faces de frottement.
C’est pourquoi cet article est consacré, tout d’abord, à l’étude du comportement dynamique des anneaux de garniture afin d’évaluer les conditions d’un fonctionnement stable assurant un film interfacial d’épaisseur optimale. En effet, dans de nombreux domaines d’application, le comportement dynamique de garnitures pour liquides reste stable, on peut alors le modéliser plus facilement.
Ensuite, l’article aborde la dissipation thermique dans l’interface et les transferts thermiques par conduction et convection avec l’environnement via les anneaux solides. Une approche simplifiée conduisant à une solution semi-analytique est présentée. Elle est validée par un modèle numérique plus élaboré. Cela permet d’établir l’accroissement de température des faces de frottement et les variations de température au sein des anneaux. On peut en déduire la longueur thermique utile des anneaux et le débit de refroidissement nécessaire.
L’importance des aspects thermiques apparaît également dans l’article [BM 5428], y sont déterminées les déformations des faces engendrées par les gradients thermiques au sein des anneaux.
Un glossaire et une liste des symboles et indices utilisés sont présentés en fin d’article.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Dissipation et transferts thermiques
L’existence de frottement entre les faces d’une garniture mécanique conduit nécessairement à une dissipation d’énergie dans l’interface qui se traduit par une élévation de la température du contact et des éléments contigus. Ces variations de température peuvent modifier de façon notable l’aspect géométrique des surfaces et donc l’épaisseur du film, mais aussi conduire à une vaporisation du liquide, ce qui n’est généralement pas souhaité.
L’objectif de ce chapitre est d’établir des outils permettant d’évaluer les élévations de température entre les surfaces. Il faudra tout d’abord s’intéresser à la dissipation dans le contact, puis aux transferts de chaleur au voisinage de l’interface.
Nous supposerons dans ce chapitre que le régime thermique est stationnaire et que la configuration est axisymétrique.
2.1 Dissipation thermique
La dissipation thermique est principalement due au frottement entre les aspérités et au frottement visqueux résultant du cisaillement du film lubrifiant. Avant de s’intéresser à cet aspect, il est important d’analyser l’effet d’une variation de la température sur les propriétés du fluide
HAUT DE PAGE
La propriété essentielle en lubrification est la viscosité du fluide. Elle conditionne l’amplitude des effets hydrodynamiques et contrôle également la dissipation d’énergie dans l’interface. Pour un liquide à pression constante, la viscosité est généralement une fonction décroissante de la température. La figure 3 montre l’évolution de la viscosité de l’eau et de deux huiles ISO VG 10 et ISO VG 46 en fonction de la température ; on observe des diminutions très nettes de la viscosité, plus particulièrement pour les huiles. Ce comportement des liquides est très intéressant, puisqu’il limite naturellement les effets thermiques, la viscosité et donc la dissipation diminuant lorsque la température augmente.
Il est possible de décrire les évolutions de la viscosité µ par la loi de Reynolds :
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Dissipation et transferts thermiques
BIBLIOGRAPHIE
-
(1) - ETSION (I.) - A review of Mechanical Face Seal Dynamics, The shock and vibration digest. - 14, 3, pp 9-14 (1982).
-
(2) - ETSION (I.) - Dynamic Analysis of Non Contacting face Seals. - Transactions of the ASME, Journal of Lubrication Technology, Vol. 104, 4, pp. 460-467, October 1982.
-
(3) - TOURNERIE (B.), FRENE (J.) - Computer modelling of the functioning modes of non-contacting face-seals. - Tribology International, Vol.17, n° 5, pp. 269-276, October 1984.
-
(4) - GREEN (I.), ETSION (I.) - Non Linear Dynamic Analysis of Noncontacting Coned Face Mechanical Seals. - ASLE Transactions, Vol. 29, 3, pp. 383-393 (1986).
-
(5) - GREEN (I.) - A Transient Dynamic Analysis of Mechanical Face Seals Including Asperity Contact and Face Deformation. - Tribology Transactions, Vol. 45, 3, 284-293 (2002).
-
(6)...
DANS NOS BASES DOCUMENTAIRES
Workshop EDF-PPRIME, Poitiers Futuroscope, organisé par le département GMSC de l’Institut P' (UPR 3346, CNRS-Université de Poitiers-ENSMA) et par EDF R&D
http://edf-pprime-2014.sciencesconf.org
STLE Annual Meeting and Exhibition
http://www.stle.org/events/annual/default.aspx?
Fluid Sealing Conference, BHRGroup
International Sealing Conference (ISC), Stuttgart
http://www.sealing-conference.com
HAUT DE PAGE
Se référer aux articles [BM 5425] et [BM 5426].
HAUT DE PAGEOrganismes – Fédérations – Associations (liste non exhaustive)
Association Française de Mécanique (AFM)
ARTEMA, Syndicat des Industries Mécanique, Membre de la FIM
ESA, European Sealing Association
STLE, Society...
Cet article fait partie de l’offre
Fonctions et composants mécaniques
(215 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive