Présentation

Article

1 - CONTRAINTES RÉSIDUELLES

2 - PRINCIPE DES TRAITEMENTS DE SURFACE MÉCANIQUES

3 - COMPARAISON DES DIFFÉRENTES TECHNIQUES

Article de référence | Réf : M1190 v1

Comparaison des différentes techniques
Traitements de surface mécaniques - Principes

Auteur(s) : Jian LU

Date de publication : 10 déc. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Combinant un grand nombre de sollicitations mécaniques et thermomécaniques défavorables, la surface d’une pièce mécanique reste une zone particulièrement vulnérable. Les traitements de surface mécaniques thermiques et thermochimiques font partie des nombreux procédés permettant d’améliorer les caractéristiques superficielles et globales des pièces. Ils combinent les phénomènes de durcissement superficiel, une modification structurale et l’introduction de contraintes résiduelles de compression. Cet article présente et compare les procédés les plus utilisés pour parvenir à ces changements : le grenaillage de précontrainte, le galetage, le martelage, le choc laser et la génération de nanostructures de surface.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jian LU : Professeur de la chaire de Génie mécanique - Department of Mechanical Engineering - The Hong Kong Polytechnic University

INTRODUCTION

D’après les analyses statistiques sur les causes de la défaillance des composants mécaniques, on constate que, dans la grande majorité des cas, la défaillance est due à la rupture de la pièce avec un amorçage en surface. La qualité de la couche superficielle est donc un facteur essentiel pour l’intégrité mécanique des structures mécaniques. En effet, les zones superficielles sont souvent les plus sollicitées à causes des concentrations de contraintes imposées par la géométrie d’une pièce mécanique qui possède des trous, des entailles et autres discontinuités géométriques. En plus, à l’exception des sollicitations mécaniques par contact, les contraintes d’origines mécaniques et thermomécaniques sont très souvent maximales en surface, on peut citer la flexion et la torsion, et le choc thermique. Même pour une sollicitation en traction, les rugosités en surface génèrent une concentration de contraintes locales qui fait augmenter le niveau de contraintes mécaniques. La surface d’une pièce mécanique est aussi une zone de contact avec l’environnement hostile comme l’air, pour des problèmes d’oxydation, et le milieu corrosif. Elle est également la partie d’une pièce où se produisent les phénomènes de fretting, d’usure et de frottement, de grippage et de matage. Combinant tous les facteurs défavorables, la surface d’une pièce mécanique est une zone particulièrement vulnérable qui intéresse les mécaniciens pour la conception mécanique et les spécialistes de matériaux pour améliorer les performances mécaniques et globales.

Pour améliorer les propriétés de surface, il existe un nombre important de procédés de fabrication comme les traitements thermiques et thermochimiques, les dépôts en phase vapeur (PVD et CVD), les projections thermiques, les traitements de surface mécaniques. Dans ce dossier, nous allons traiter essentiellement la dernière catégorie de traitements.

Les traitements de surface mécaniques sont des procédés qui permettent d’améliorer les performances des matériaux par une action combinée de durcissement superficiel, de modification structurale et d’introduction de contraintes résiduelles de compression grâce à une déformation plastique hétérogène à la surface des composants mécaniques. Les traitements les plus utilisés sont le grenaillage de précontrainte, le galetage, le martelage, le choc laser, la génération de nanostructures par des déformations plastiques aléatoires introduites à la surface des matériaux. Le principe de base est la mise en application d’une pression à la surface d’un matériau pour provoquer une déformation plastique soit par un outil de forme comme pour le grenaillage ou le galetage, soit par une onde de choc comme pour le traitement par choc laser. Cette déformation plastique n’est pas homogène sur la profondeur de la pièce à partir de la surface traitée. Ce type de traitements génère des contraintes résiduelles de compression qui sont souvent favorables pour la résistance à la fatigue et à la corrosion. Suite à des déformations plastiques, le matériau peut se durcir grâce à un écrouissage superficiel et/ou peut réduire la taille de grain ou générer une transformation de phase. Ces changements structuraux sont aussi favorables dans une majorité de cas vis-à-vis des sollicitations mécaniques comme la fatigue, l’usure et le frottement. Si la dureté et la taille des grains sont des paramètres bien connus des mécaniciens et des métallurgistes et communs par rapport aux autres traitements de surface, l’introduction des contraintes résiduelles de compression constitue une particularité. L’autre caractéristique particulière de ces traitements de surface mécaniques est l’état de surface des pièces traitées. En effet, après le traitement, l’état de surface et la géométrie locale des pièces sont souvent modifiés par rapport à l’état initial. Dans le cas du grenaillage et du martelage, une détérioration de l’état de surface est fréquemment observée. En revanche, les traitements par galetage et par choc laser peuvent engendrer une amélioration ou une conservation de l’état de surface si les conditions optimales de traitement sont appliquées. Les différents paramètres pouvant être modifiés seront évoqués ainsi que leurs conséquences sur les propriétés d’emploi. Ce dossier a pour objectif de présenter les principes de base des différents traitements de surface mécaniques. Le dossier suivant [M 1 191] présente les paramètres importants qui vont jouer sur les résultats de ces traitements. Les détails technologiques comme la configuration des machines, les conditions de traitement et leurs effets sur les performances des matériaux seront présentés dans les dossiers suivants de cette série sur les traitements de surface mécaniques.

Les références bibliographiques sont regroupées dans le Pour en savoir plus .

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m1190


Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Comparaison des différentes techniques

Quand on compare les différentes techniques de traitement de surface mécaniques utilisées dans l’industrie ou en développement, on peut tirer les renseignements suivants.

Le grenaillage de précontrainte, le galetage, le martelage, le choc laser et le grenaillage par ultrasons sont les cinq traitements de surface les plus utilisés et les plus intéressants pour améliorer les performances des matériaux. Les contraintes résiduelles de compression sont essentielles pour compenser les sollicitations mécaniques induites par le fonctionnement des systèmes mécaniques.

Le grenaillage de précontrainte par la projection de billes est certainement le traitement le plus commun en raison de sa simplicité et sa modularité pour traiter tous les types de pièces mécaniques. On peut citer comme applications les aubes de turbines des moteurs d’avion, les ressorts, les structures avioniques, les engrenages. Son principal inconvénient est la génération d’une rugosité superficielle. En effet, plus l’intensité du traitement est importante, plus la profondeur de mise en compression est grande. On risque alors d’introduire une rugosité superficielle plus importante qui joue un rôle négatif sur la résistance à la fatigue. Une optimisation du traitement est donc nécessaire pour chaque type de matériaux. Dans certains cas critiques comme les composites à matrice métallique et les autres matériaux très sensibles à l’état de surface, les effets bénéfiques de contraintes résiduelles de compression peuvent être effacés par la détérioration de l’état de surface.

Le galetage est un traitement mécanique superficiel intéressant et efficace, car dans la plupart des cas, il permet à la fois d’introduire des contraintes résiduelles de compression et d’améliorer l’état de surface de la pièce mécanique. De plus, il introduit souvent des contraintes résiduelles de compression sur une profondeur plus importante que le grenaillage de précontrainte. L’inconvénient majeur de ce traitement est sa limitation pour traiter une surface de forme irrégulière. En effet, sauf pour quelques configurations simples, la majorité des applications de ce traitement concerne des pièces axisymétriques. Son utilisation principale reste le galetage de renforcement pour améliorer la résistance à la fatigue des pièces mécaniques, notamment lorsque l’on est en présence de changements de diamètre...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Comparaison des différentes techniques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MACHERAUCH (E.), KLOOS (K.H.) -   Origin, measurement and evaluation of residual stresses  -  . Residual Stress in Science and Technology, Edited by E:Macherauch and V. Hauk, DGM, VERLAG, p. 3-26 (1987).

  • (2) - JI (N.) -   Application de l’analyse des profils de raies de diffraction X pour caractériser l’état microstructural et mécanique des matériaux métalliques  -  . Thèse de Doctorat, ENSAM Paris (1989).

  • (3) -   Handbook of Measurement of Residual Stresses  -  . Edited by J. Lu, SEM, Prentice Hall (1996).

  • (4) - CHABNAT (A.), MARTIN (R.) -   Les mémoires techniques du CETIM  -  . Méthode du trou et méthode de Sachs, no 24 (déc. 1974).

  • (5) - FLAVENOT (J.F.), NIKU-LARI (A.) -   Les mémoires techniques du CETIM  -  . Méthode de la flèche, no 31 (sept. 1977).

  • (6) - LU (J.),...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS