Présentation

Article

1 - SYSTÈMES BINAIRE ET TERNAIRE FER-AZOTE, FER-AZOTE-CARBONE

2 - PRINCIPE DE LA RÉACTION DE NITRURATION

3 - TRANSFERT DE L’AZOTE DANS L’ÉTAT SOLIDE

4 - CONCLUSION

Article de référence | Réf : M1224 v1

Systèmes binaire et ternaire fer-azote, fer-azote-carbone
Théories des traitements thermochimiques – Nitruration – Nitrocarburation Systèmes binaire et ternaire fer-azote et fer-azote-carbone - Couche de combinaison

Auteur(s) : Michel GANTOIS, Jacky DULCY

Relu et validé le 26 mars 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les traitements de nitruration et de nitrocarburation ont pour objectif de doter l’alliage métallique d’un gradient de dureté et de contraintes de compression qui améliorent ses résistances à l’usure et à la fatigue. Suite au transfert d’atomes d’azote et de carbone, des couches de combinaison se forment à la surface des aciers. La formation de ces couches peut être décrite à l’aide d’une approche thermodynamique des systèmes binaires (fer-azote) et ternaires (fer-azote-carbone) et de la connaissance des mécanismes de transfert de matière relatifs à la diffusion de l’azote en systèmes polyphasés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Michel GANTOIS : Professeur à l’École nationale supérieure des Mines et à l’École européenne d’ingénieurs en Génie de matériaux, Nancy

  • Jacky DULCY : Ingénieur de recherches CNRS - Ingénieur civil des Mines

INTRODUCTION

Les traitements de nitruration et de nitrocarburation ont pour objectif, à partir d’une réaction hétérogène de surface, de transférer dans l’alliage métallique solide des atomes d’azote (nitruration) ou des atomes d’azote et de carbone (nitrocarburation). Bien que ces traitements ne concernent pas que les alliages ferreux, c’est incontestablement pour ceux-ci qu’ils sont le plus généralement mis en œuvre sur de nombreuses nuances d’acier. En effet, grâce à la formation des phases qui accompagnent le transfert de l’azote dans l’acier, on obtient, à partir de la surface, un gradient de dureté et un gradient de contraintes de compression qui permettent d’améliorer, en particulier, les résistances à l’usure et à la fatigue.

Excepté pour le cas des aciers inoxydables austénitiques, les traitements sont réalisés en phase ferritique, c’est-à-dire à des températures comprises entre 380 et 580 °C, cette dernière température étant inférieure d’une dizaine de degrés à celle de la transformation eutectoïde dans le binaire fer-azote.

L’approche théorique des traitements de nitruration et de nitrocarburation est présentée pour les traitements qui mettent en œuvre des réactions hétérogènes gaz-solide (nitruration gazeuse par des mélanges contenant de l’ammoniac) pour lesquelles nous disposons de connaissances :

  • thermodynamiques relatives aux systèmes fer-azote et fer-azote-carbone ;

  • sur les mécanismes de transfert de matière en particulier à l’interface gaz-solide.

Nous expliquerons ici la formation des nitrures et des carbonitrures de fer (couches de combinaison) à partir des systèmes fer-azote et fer-azote-carbone.

Dans le second article, nous aborderons les mécanismes de diffusion/précipitation dans les aciers alliés contenant jusque 5 % de chrome (fraction massique) en vue d’expliquer la formation des précipités nanométriques qui confèrent, par exemple, aux aciers 38CrMoV13 et 32crMoV5 de remarquables propriétés mécaniques de surface.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m1224


Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Systèmes binaire et ternaire fer-azote, fer-azote-carbone

1.1 Système binaire fer-azote

  • Le diagramme d’équilibre fer-azote (figure 1) met en évidence la présence des différentes phases ε, γ′ et α, soit trois domaines monophasés :

    • une solution solide d’insertion d’azote dans le fer α de structure cubique centrée appelée « couche de diffusion ». Celle-ci est le siège de mécanisme de diffusion/précipitation en présence de chrome, vanadium, aluminium, titane etc., en solution. Ce mécanisme est à l’origine du durcissement par précipitation de nitrures et de mise en contrainte de compression de la surface des aciers ;

    • une phase intermétallique γ′ − Fe4N1−x non-stoechiométrique entre 400 et 680 °C (cf. figure 1). Ce nitrure de fer présente une structure de type cubique face centrée : un atome d’azote occupe le site octaédrique situé au centre de la maille cubique à face centrée constituée par les atomes de fer ;

    • une phase intermétallique ε − Fe2N1−x non-stoechiométrique de structure hexagonale compacte dont les sites octaédriques sont occupés par une quantité variable d’atomes d’azote et de carbone, dans le cas du système ternaire fer-azote-carbone Fe2(N, C)1−x .

    Des auteurs (...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Systèmes binaire et ternaire fer-azote, fer-azote-carbone
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MITTEMEIJER (E.J.), SOMERS (M.A.J.) -   Thermodynamics, kinetics and process control of nitriding  -  Surface Engineering, Vol. 13, p. 483-497 (1997).

  • (2) - KOOI (B.J.), SOMERS (M.A.J.), MITTEMEIJER (E.J.) -   Thermodynamics and long-range order of nitrogen in γ′ − Fe4N1-x  -  Metallurgical and Materials Transactions A, vol. 27A, p. 1055-1061 (April 1996).

  • (3) - KOOI (B.J.), SOMERS (M.A.J.), MITTEMEIJER (E.J.) -   An evaluation of Fe-N phase diagram considering long-range order of N in γ′ and ε  -  Metallurgical and Materials Transactions A, vol. 27A, p. 1063-1071 (1996).

  • (4) - SOMERS (M.A.J.), MITTEMEIJER (E.J.) -   Layer growth on gaseous nitriding of pure iron : Evaluation of diffusion coefficient for nitrogen in iron nitride  -  Metallurgical and Materials Transactions A, vol. 26A, p. 57-71 (January 1995).

  • (5) - HILLERT (M.), STAFFANSON (I.) -   The regular solution model for stoichiometric phases and ionic melts  -  Acta Chemical Scandinavica, vol. 24, p. 3618-3626.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Traitements des métaux

(134 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS