Présentation

Article

1 - LE SURMOULAGE

2 - CONCEPTION DES PIÈCES ET MOULES. PROCÉDÉ INDUSTRIEL

3 - SIMULATION DU SURMOULAGE

4 - APPLICATION PARTICULIÈRE : LE MID

5 - CONCLUSION

Article de référence | Réf : AM3699 v1

Conception des pièces et moules. Procédé industriel
Surmoulage ou surinjection

Auteur(s) : Patricia SANDRÉ

Date de publication : 10 oct. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le surmoulage est un procédé proche du moulage classique, mais qui permet de créer des pièces plus complexes ou spécifiques. Utilisé pour de nombreux matériaux polymères thermoplastiques, thermodurcissables ou élastomères, il intéresse un grand nombre de secteurs industriels, parmi eux l’automobile, la connectique, l’électronique, l’aéronautique et la cosmétique. Le MID (Molded Interconnected Device) en est une application particulière, ce système permet la fabrication de pièces 3D ayant des fonctions à la fois mécaniques et électriques. Le surmoulage permet aussi de mettre en œuvre des technologies connexes telles que la métallisation pour réaliser des pièces de haute technicité.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Patricia SANDRÉ : Ingénieur en sciences des matériaux de l’École polytechnique de l’université de Nantes (ex ISITEM) - Mastère Matériaux et mise en forme de l’École nationale supérieure des mines de Paris, CEMEF - Ingénieur en Recherche et développement matériaux polymères et procédés de mise en forme - Expert en simulation numérique du moulage

INTRODUCTION

Le procédé de surmoulage, ou surinjection, est très proche du procédé de transformation par injection, car il s’appuie sur les bases du moulage classique.

Cette technologie s’applique aussi bien à des pièces simples que complexes et intéresse un grand nombre d’industries et de domaines d’applications tels que : automobile, connectique, électronique, téléphonie, électroménager, aéronautique et espace, mécatronique, jouets, cosmétique et design...

La surinjection peut être utilisée pour de nombreux matériaux polymères thermoplastiques, thermodurcissables ou élastomères.

Cette méthode de transformation permet, en une ou deux étapes, de fabriquer des pièces avec inserts qui, très souvent, ne pourraient être réalisées avec les méthodes classiques.

Enfin, le surmoulage permet de supprimer des étapes supplémentaires telles que l’assemblage ou les finitions et donc de réduire les coûts.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3699


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

2. Conception des pièces et moules. Procédé industriel

2.1 Les différents types de surmoulage

On différencie deux principaux types de surmoulage.

HAUT DE PAGE

2.1.1 Surmoulage plastique sur plastique

Il est possible d’utiliser de nombreux polymères en fonction de leurs propriétés et de leur mode de transformation.

Les variantes les plus courantes sont :

  • thermoplastique sur thermoplastique ;

  • thermodurcissable sur thermoplastique ;

  • thermodurcissable sur thermodurcissable ;

  • élastomère sur thermoplastique.

Ainsi les thermoplastiques (ou polymères à transformation réversible) doivent être, après chauffage, transformés dans un moule froid, alors que les thermodurcissables (ou polymères à transformation irréversible) doivent, eux, être transformés dans un moule chauffé et les chutes éventuelles seront perdues.

Il faudra donc bien optimiser l’ordre d’utilisation des polymères en fonction de leur température et mode de transformation afin de ne pas générer de dégradation (à l’occasion de la refusion partielle en surface de l’insert, par exemple).

Remarque : la rapidité de mise en œuvre des thermoplastiques avec une moindre dépense énergétique et la possibilité de réutilisation des déchets ont favorisé leur emploi aux dépens des thermodurcissables.

L’insert thermoplastique A est moulé de manière traditionnelle mais en prenant des précautions concernant :

  • la localisation des zones d’éjection de la pièce (par exemple, les marques des éjecteurs peuvent poser des problèmes d’étanchéité) ;

  • les lignes de ressoudure, afin d’éviter des zones de fragilisation mécanique pour la pièce A et la pièce finale ;

  • la localisation des plans de joint qui ne devra pas poser de problème d’aspect ou, par exemple, se trouver au niveau d’une zone mécanique de la pièce finale ;

  • la géométrie et la localisation des points d’injection, afin de préserver un bon aspect en surface et d’optimiser les pressions d’injection et la qualité du moulage ;

  • la...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conception des pièces et moules. Procédé industriel
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - REYNE (M.) -   Technologie des plastiques  -  . 3e édition revue et augmentée (1998). Hermès.

  • (2) - TROTIGNON (P.-P.), VERDU (J.), DOBRACZYNSKI (M.), PIPERAUD (M.) -   Matières plastiques, structures – propriétés, mise en œuvre, normalisation  -  (2006). Afnor-Nathan.

  • (3) - GRUAU (C.) -   Génération de métriques pour adaptation anisotrope de maillages, application à la mise en forme des matériaux  -  . Thèse CEMEF-ENSMP (déc. 2004).

  • (4) - BATKAM (S.), AGASSANT (J.-F.), COUPEZ (T.) -   Couplage thermique moule/polymère en remplissage 3D  -  . CEMEF, École des mines de Paris, UMR CNRS 7635 – Congrès français de Mécanique, Nancy (3-7 sept. 2001).

  • (5) - BATKAM (S.), COUPEZ (T.), AGASSANT (J.-F.) -   Application d’un solveur thermique multidomaine robuste en injection 3D  -  . CEMEF, École des mines de Paris, UMR CNRS 7635. Congrès français de Thermique, SFT 2002, Vittel (3-6 juin 2002).

  • ...

1 Constructeurs – Fournisseurs – Distributeurs

(Liste non exhaustive)

Transvalor, Sophia-Antipolis (France) http://www.transvalor.com

PMPC (France) http://www.pmpc.fr

Moldflow, Villeurbanne (France) http://www.moldflow.com

École des mines de Paris/CEMEF Sophia-Antipolis (France) https://www.cemef.minesparis.psl.eu/campus-sophia-antipolis/

FCI, Versailles (France) http://www.fciconnect.com

Comptec SA, Montauban (France) http://www.comptec.fr

Heraeus et données MID http://www.faps.uni-erlangen.de/mid

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS