Présentation
EnglishRÉSUMÉ
Cet article présente les principaux phénomènes impliqués dans les procédés de moulage des composites structuraux à matrice polymère et propose une description mathématique simplifiée qui découle directement des grands principes physiques adaptés aux milieux fibreux hétérogènes et anisotropes. Les composites structuraux désignent des polymères thermoplastiques ou thermodurcissables renforcés de fibres continues. Le moulage recouvre les technologies où les écoulements de polymère jouent un rôle important dans la fabrication de la pièce.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Christophe BINETRUY : Professeur - École Centrale de Nantes, Institut de Recherche en Génie Civil et Mécanique, - UMR CNRS 6183, Nantes, France
INTRODUCTION
Les composites à matrice polymère n'existent pas à l'état naturel, il faut donc les fabriquer. Derrière cette affirmation simple se cache une réalité complexe forte de conséquences pour ces matériaux. En effet, en raison de la grande diversité des résines, renforts et additifs et de la grande liberté de forme et de taille offerte, ces matériaux s'avèrent être extrêmement polyvalents puisqu'ils peuvent être façonnés en ajustant leurs propriétés aux exigences spécifiques d'une application. Cette flexibilité introduit tout de même une contrepartie. Plus que tout autre matériau, les composites requièrent une intégration étroite des connaissances des matériaux constitutifs, à l'étude des procédés de fabrication et aux performances des pièces obtenues. Bien que les propriétés des composites soient principalement déterminées par celles de ses constituants, l'expérience prouve que leur mode d'élaboration influe de façon significative sur leur niveau de performance et ceci d'au moins deux façons :
-
par la génération d'imperfections de moulage plus communément désignées sous le terme de défauts qui altèrent les performances de la pièce (porosités, désalignement des fibres, sous-polymérisation des résines, contraintes internes…) ;
-
par la modification des paramètres définis en phase de conception de la pièce composite (orientation et distribution des fibres).
La technologie de fabrication constitue donc un maillon essentiel dans la chaîne de conception-fabrication de la pièce composite. Elle prend ainsi une grande part dans la croissance des composites de par les coûts qu'elle génère, sa capacité à transformer des pièces techniques de taille plus ou moins grande, sa souplesse d'utilisation, les cadences qu'elle autorise et sa reproductibilité. Le choix d'un procédé de fabrication est également guidé par son impact environnemental et par l'adéquation au besoin technique.
Un facteur clé de développement des technologies, et donc des composites, est la capacité de développement de procédés qui satisfont aux exigences du marché visé. Au cours des trois dernières décennies de nombreuses technologies ont été développées pour répondre aux marchés de grande diffusion et de haute performance. Bien que l'empirisme ait souvent accompagné les premiers pas de ces technologies, les progrès les plus importants sont venus de l'effort de compréhension et de modélisation des phénomènes physiques associés à ces procédés. Des modèles plus ou moins sophistiqués ont été élaborés sur la base de connaissances qui restent encore partielles mais néanmoins suffisantes pour aider les ingénieurs et techniciens à mettre en place des technologies robustes. Ils permettent de comprendre comment les paramètres du procédé et les caractéristiques des constituants affectent les propriétés finales des pièces composites. Historiquement ce sont les bureaux d'étude ou de calcul qui ont en premier fait usage de logiciels métier pour comparer des stratégies de fabrication, des choix de matériaux et ainsi apporter un support aux équipes de production. L'enjeu actuel est que des outils, méthodes, modèles, règles soient également utilisés directement dans les ateliers de fabrication pour :
-
anticiper des difficultés pratiques réelles ;
-
répondre de façon très interactive aux aléas de production ;
-
optimiser des techniques de moulage des composites ;
-
définir la meilleure stratégie de surveillance des procédés (mesure de pression, température, etc.) ;
-
réduire les temps de mise au point des procédés.
Ainsi, ce type d'approche permet de remplacer progressivement l'empirisme très fortement ancré dans l'univers des ateliers de fabrication par des règles quantitatives prédictives.
L'objet de cet article est de présenter les principaux phénomènes impliqués dans les procédés de moulage des composites structuraux à matrice polymère et de proposer une description mathématique simplifiée qui découle directement des grands principes physiques adaptés aux milieux fibreux hétérogènes et anisotropes. Les composites structuraux désignent des polymères thermoplastiques ou thermodurcissables renforcés de fibres continues. Le moulage recouvre les technologies où les écoulements de polymère jouent un rôle important dans la fabrication de la pièce.
MOTS-CLÉS
matériaux composites moulage polymères thermodurcissables polymères thermoplastiques milieux fibreux
VERSIONS
- Version archivée 1 de oct. 2004 par Christophe BINÉTRUY
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Microstructures des composites et descripteurs associés
La microstructure fait référence aux caractéristiques de la structure interne du matériau comportant plusieurs phases non miscibles et présentant diverses longueurs internes. Pour les composites renforcés de fibres, les échelles de longueur appropriées sont celles qui révèlent la partition du matériau en régions continues (appelées phases) telles que les fibres individuelles ou des zones quasi- continues comme les faisceaux unidirectionnels de fibres qu'on appelle mèche ou roving. Il y a plusieurs éléments géométriques importants à considérer dans le but de modéliser les procédés composites :
-
les composites synthétiques sont renforcés par des structures fibreuses issues d'un processus de fabrication dont le but est de construire des architectures périodiques contrôlées comme des tissus, (multiaxiaux, etc. ou totalement aléatoires comme des mats [N 2 511]. Ces renforts sont stratifiés et mis en forme au travers de procédés de fabrication qui leur font perdre une partie de cette régularité géométrique. Cela peut se traduire par le présence à longue distance d'hétérogénéités dont l'influence à l'échelle des procédés peut être suffisamment importante pour constituer une cause d'apparition de défaut. Un exemple de non-localité de ce type est une variation du taux de fibre sur une distance d'un ordre de grandeur similaire à celui de la pièce, qui engendre une distorsion de la géométrie d'un front de résine ;
-
dans les procédés mettant en jeu des écoulements de résine entre les fibres, c'est le volume complémentaire aux fibres qui constitue le facteur géométrique le plus important. Alors que le volume total de chaque phase peut être facilement déterminé à partir de la connaissance des masses surfaciques des renforts et de la densité des fibres, les caractéristiques géométriques de ces volumes (appelés espace poral) sont quant à elles indéterminées. On verra au paragraphe 2.1...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Microstructures des composites et descripteurs associés
BIBLIOGRAPHIE
-
(1) - TORQUATO (S.), WASLACH (H.W.JR.) - Random heterogeneous materials : microstructure and macroscopic properties. - In : Appl. Mech. Rev. 55.4, B62-B63 (2002).
-
(2) - ZHANG (F.), COMAS-CARDONA (S.), BINETRUY (C.) - Statistical modeling of in-plane permeability of non-woven random fibrous reinforcement. - In : Composites Science and Technology 72.12, p. 1368-1379 (2012).
-
(3) - WHITAKER (S.) - The method of volume averaging. - T. 13. Springer Science & Business Media (2013).
-
(4) - RUBINSTEIN (J.), TORQUATO (S.) - Flow in random porous media : mathematical formulation, variational principles, and rigorous bounds. - In : Journal of Fluid Mechanics 206, p. 25-46 (1989).
-
(5) - LOPEZ (E.) et al - Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics. - In : International Journal of Material Forming 9.2, p. 215-227 (2016).
-
...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive