Présentation
En anglaisAuteur(s)
-
Jérôme BIKARD : Ingénieur de l'École supérieure de mécanique de Marseille (ESM2) - Docteur en Mécanique de l'Université Aix-Marseille II. En charge de recherches au CEMEF (Centre de mise en forme des matériaux) MINES ParisTech – CNRS UMR 7635
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les polyuréthanes, polymères thermodurcissables, occupent une place privilégiée dans l'industrie. Ils résultent de la réaction de polymérisation chimique d'un isocyanate avec des groupements portant un hydrogène mobile (principalement des groupements hydroxyle), par exemple des fonctions alcool. Pour obtenir des matériaux alvéolaires, il faut coupler cette réaction exothermique à un dégagement gazeux (chimique ou physique) qui permet la création d'alvéoles de gaz en surpression au sein du polymère (donc son expansion) tant que le polyuréthane n'est pas complètement polymérisé. Les propriétés finales de la mousse de polyuréthane dépendent des composants chimiques (diphénylméthane diisocyanates DMI ou toluylène diisocyanates TMI), de l'agent gonflant, des conditions du procédé (température, pression, hygrométrie) et de la nature des parements du moule (effet de peau important). Grâce aux développements constants de nouvelles formulations (nouveaux monomères, nouveaux catalyseurs et ajouts d'autres substances), les polyuréthanes sont aujourd'hui fabriqués avec une grande variété de textures et de duretés.
Cependant, du fait de la complexité des couplages thermo-chemio-rhéologiques prenant place lors de la mise en œuvre ainsi que de la géométrie parfois complexe des moules utilisés, le contrôle et l'optimisation des procédés s'avère difficile. Les modèles analytiques que l'on peut trouver dans la littérature sont insuffisants pour rendre compte de la complexité des phénomènes. Du fait de la concomitance des mécanismes (réactions chimiques, évolution rapide et hétérogène de la température, couplages rhéologiques forts, écoulements 3D), seul un modèle incluant tous ces éléments a une chance de décrire ce type de procédé. L'objectif de ce dossier est donc la mise en place, du point de vue de l'ingénieur, d'un protocole systématique d'identification des paramètres thermomécaniques majeurs du polyuréthane alvéolaire ainsi que leur emploi dans un modèle 3D, présenté ici, apte à rendre compte de l'évolution des propriétés d'une mousse polyuréthane au cours du procédé et capable de prédire, au moins en moyenne, la microstructure cellulaire de la mousse.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Deux cas d'école
Que l'objectif soit la prédiction des propriétés rhéologiques de la mousse ou l'évaluation de son expansion globale, il faut se ramener à la résolution du problème d'équilibre mécanique du mélange dans le moule. Le comportement mécanique de la mousse dépend au premier plan de sa compressibilité et de ses évolutions rhéologiques. La prédiction des évolutions mécaniques de la mousse impose donc de définir une loi de comportement ainsi que quelques hypothèses.
-
Principales hypothèses
-
Le mélange est supposé avoir un comportement viscoélastique. Une loi de comportement mécanique de type Maxwell est utilisée.
-
Les évolutions temporelles de la viscosité du mélange (et de son élasticité) sont supposées connues (elles sont fonction des réactions chimiques, mais les couplages chimio-rhéologiques ne sont pas introduits explicitement à ce niveau).
-
La viscosité du mélange est indépendante de la pression, ce qui peut être contesté dès que le taux de gaz devient suffisamment important.
-
Les forces d'inertie sont négligées car les évolutions de la mousse restent quasi-statiques, la gravité doit en revanche être prise en compte.
-
Une loi de compressibilité doit être définie, ce qui est réalisé par le biais de l'écriture de la conservation de la masse totale du mélange polymère + gaz en expansion.
-
Les couplages thermomécaniques forts sont négligés, c'est-à-dire que l'on suppose que l'enceinte régule le mélange en température si bien qu'elle peut être supposée homogène et constante dans la mousse en cours de développement.
-
-
Loi de comportement
Sous ces hypothèses, le problème mécanique de l'expansion du mélange viscoélastique peut s'écrire :
avec :
- ρ :
- masse volumique du mélange,
- u :
- vitesse d'expansion du mélange,
...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Deux cas d'école
BIBLIOGRAPHIE
-
(1) - BOUAYAD (R.), BIKARD (J.), AGASSANT (J.A.) - Compressible flow in a plate/plate rheometer : application to the experimental determination of reactive expansion's models parameters for polyurethane foam - Int. J. of Forming Processes, in revision (2008).
-
(2) - DOI (M.) - Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crytstalline phases - J. Polym. Sc., 19 (2), 229 (1981).
-
(3) - DOI (M.), OHTA (T.) - Dynamics and rheology of complex interfaces - J. Chem. Phys., 95 (2), 1242 (1991).
-
(4) - WINTER (H.H.) - Can the gel point of a crosslinking polymer be detected by the G′-G′′ crossover - Polym. Eng. Sci., 27, 1698-1702 (1987).
-
(5) - WINTER (H.H.), MORGANELLI (P.) - Chambon, F. stoechiometry effect on rheology of model polyurethanes at gel point - Macromolecules, 21, 532-535 (1988).
-
(6) - CORAN...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Quelques logiciels (liste non exhaustive) permettant la simulation numérique de l'injection de mousses dans un moule :
VirtuFoam : modules de calcul de moussage par éléments finis en 2D plan et axisymétrique utilisant le logiciel Matlab© – couplage équation du mouvement, de la chaleur, conservation des espèces chimiques, évolution du front de matière dans un moule.
Rem3D : logiciel de simulation 3D par éléments finis développé par le CEMEF (MINES ParisTech – CNRS UMR 7635) et dédié à la simulation de l'injection plastique. Développement soutenu par un consortium industriel regroupant des acteurs majeurs de différents secteurs de la plasturgie comme ARKEMA, SCHNEIDER ELECTRIC INDUSTRIES, ESSILOR INTERNATIONAL, PLASTIC OMNIUM AUTO EXTERIEUR, FCI, SNECMA PROPULSION SOLIDE et DOW BENELUX BV (Pays Bas), RHODIA
http://www.transvalor.com/rem3d.php
Moldflow : dispose d'un module pour la description du procédé MuCell® (Microcellular injection molding)
http://www.moldflow.com/stp/pdf/eng/MP15_B_E.pdf
FLUENT :
http:/www.fluent.com/about/news/newsletters/06v15i1/s12.pdf
...Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive