Présentation

Article

1 - APPLICATIONS ET PRÉSENTATION DU PROCÉDÉ

2 - DIFFÉRENTES ÉTAPES DU MOUSSAGE RÉACTIF

3 - DEUX CAS D'ÉCOLE

4 - APPORT DE LA MODÉLISATION

5 - EXEMPLES DE SIMULATIONS NUMÉRIQUES

6 - CONCLUSION

Article de référence | Réf : AM3714 v1

Conclusion
Fabrication des mousses en polyuréthane

Auteur(s) : Jérôme BIKARD

Date de publication : 10 oct. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Jérôme BIKARD : Ingénieur de l'École supérieure de mécanique de Marseille (ESM2) - Docteur en Mécanique de l'Université Aix-Marseille II. En charge de recherches au CEMEF (Centre de mise en forme des matériaux) MINES ParisTech – CNRS UMR 7635

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les polyuréthanes, polymères thermodurcissables, occupent une place privilégiée dans l'industrie. Ils résultent de la réaction de polymérisation chimique d'un isocyanate avec des groupements portant un hydrogène mobile (principalement des groupements hydroxyle), par exemple des fonctions alcool. Pour obtenir des matériaux alvéolaires, il faut coupler cette réaction exothermique à un dégagement gazeux (chimique ou physique) qui permet la création d'alvéoles de gaz en surpression au sein du polymère (donc son expansion) tant que le polyuréthane n'est pas complètement polymérisé. Les propriétés finales de la mousse de polyuréthane dépendent des composants chimiques (diphénylméthane diisocyanates DMI ou toluylène diisocyanates TMI), de l'agent gonflant, des conditions du procédé (température, pression, hygrométrie) et de la nature des parements du moule (effet de peau important). Grâce aux développements constants de nouvelles formulations (nouveaux monomères, nouveaux catalyseurs et ajouts d'autres substances), les polyuréthanes sont aujourd'hui fabriqués avec une grande variété de textures et de duretés.

Cependant, du fait de la complexité des couplages thermo-chemio-rhéologiques prenant place lors de la mise en œuvre ainsi que de la géométrie parfois complexe des moules utilisés, le contrôle et l'optimisation des procédés s'avère difficile. Les modèles analytiques que l'on peut trouver dans la littérature sont insuffisants pour rendre compte de la complexité des phénomènes. Du fait de la concomitance des mécanismes (réactions chimiques, évolution rapide et hétérogène de la température, couplages rhéologiques forts, écoulements 3D), seul un modèle incluant tous ces éléments a une chance de décrire ce type de procédé. L'objectif de ce dossier est donc la mise en place, du point de vue de l'ingénieur, d'un protocole systématique d'identification des paramètres thermomécaniques majeurs du polyuréthane alvéolaire ainsi que leur emploi dans un modèle 3D, présenté ici, apte à rendre compte de l'évolution des propriétés d'une mousse polyuréthane au cours du procédé et capable de prédire, au moins en moyenne, la microstructure cellulaire de la mousse.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3714


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

6. Conclusion

Maîtriser l'expansion réactive de mousses polyuréthanes dans des moules à géométrie complexe est d'une très grande complexité. Mieux décrire les mécanismes physicochimiques prenant place lors du moussage nécessite de faire de nombreuses hypothèses (souvent trop simplificatrices) pour tenter de déterminer (semi)analytiquement l'évolution de la porosité et de la viscosité (ou de la viscoélasticité) de la mousse afin de relier propriétés de structure aux conditions du procédé.

Une description au moins phénoménologique du moussage réactif nécessite de mettre en place un certain nombre d'expérimentations fines : la DSC, la rhéométrie, les RX, le RhéoFoam en sont des exemples. Dans tous les cas, il s'agit de mesurer in-situ au cours de la réaction l'évolution de propriétés thermomécaniques et/ou microstructurales afin d'en extraire une information sur les réactions chimiques.

L'emploi d'un outil de simulation ad-hoc est également indispensable pour mieux prédire l'homogénéité de porosité et de distribution de tailles de bulles en fonction des conditions technologiques de mise en œuvre. Les logiciels de simulation (cf. [Doc. AM 3 714]) tendent en effet à se démocratiser et à devenir des outils incontournables pour dimensionner les moules et les pièces. L'enjeu de l'avenir est donc l'enrichissement des modèles décrivant le moussage sur des bases les plus physiques possible et l'identification optimale de leurs paramètres.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOUAYAD (R.), BIKARD (J.), AGASSANT (J.A.) -   Compressible flow in a plate/plate rheometer : application to the experimental determination of reactive expansion's models parameters for polyurethane foam  -  Int. J. of Forming Processes, in revision (2008).

  • (2) - DOI (M.) -   Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crytstalline phases  -  J. Polym. Sc., 19 (2), 229 (1981).

  • (3) - DOI (M.), OHTA (T.) -   Dynamics and rheology of complex interfaces  -  J. Chem. Phys., 95 (2), 1242 (1991).

  • (4) - WINTER (H.H.) -   Can the gel point of a crosslinking polymer be detected by the G′-G′′ crossover  -  Polym. Eng. Sci., 27, 1698-1702 (1987).

  • (5) - WINTER (H.H.), MORGANELLI (P.) -   Chambon, F. stoechiometry effect on rheology of model polyurethanes at gel point  -  Macromolecules, 21, 532-535 (1988).

  • (6) - CORAN...

1 Outils logiciels

Quelques logiciels (liste non exhaustive) permettant la simulation numérique de l'injection de mousses dans un moule :

VirtuFoam : modules de calcul de moussage par éléments finis en 2D plan et axisymétrique utilisant le logiciel Matlab© – couplage équation du mouvement, de la chaleur, conservation des espèces chimiques, évolution du front de matière dans un moule.

[email protected]

Rem3D : logiciel de simulation 3D par éléments finis développé par le CEMEF (MINES ParisTech – CNRS UMR 7635) et dédié à la simulation de l'injection plastique. Développement soutenu par un consortium industriel regroupant des acteurs majeurs de différents secteurs de la plasturgie comme ARKEMA, SCHNEIDER ELECTRIC INDUSTRIES, ESSILOR INTERNATIONAL, PLASTIC OMNIUM AUTO EXTERIEUR, FCI, SNECMA PROPULSION SOLIDE et DOW BENELUX BV (Pays Bas), RHODIA

http://www.transvalor.com/rem3d.php

Moldflow : dispose d'un module pour la description du procédé MuCell® (Microcellular injection molding)

http://www.moldflow.com/stp/pdf/eng/MP15_B_E.pdf

FLUENT :

http:/www.fluent.com/about/news/newsletters/06v15i1/s12.pdf

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS