Présentation
Auteur(s)
-
Pierre ROY : Ingénieur Technologie des polymères et des composites de l’École des mines de Douai - Ancien directeur technique de la société VYGON - Directeur technique et qualité de la société OPTIS
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Il est admis communément que la microplasturgie désigne les pièces plastiques obtenues par transformation traditionnelle mais dont la masse n’excède pas 1 g dans le cas de pièces injectées ou dont la section est de l’ordre de 1 mm2 dans le cas des profilés d’extrusion et dont le volume est situé autour de 1 mL pour les flacons obtenus par injection ou par extrusion-soufflage.
Ces pièces sont utilisées dans de nombreux domaines industriels qui vont de la cosmétique (corps de pompes de vaporisateurs), la pharmacie (unidoses de médicaments), le médical (cathéters, sondes à ballonnet), à l’électronique, les télécommunications (connecteurs, pièces de téléphones portables, fibres optiques) et l’horlogerie (engrenages).
Elles ont pour dénominateur commun une précision dimensionnelle de l’ordre de quelques micromètres, d’où le terme de « microplasturgie ».
Leur développement ne cesse de s’accélérer en raison de l’arrivée sur ces marchés des « microsystèmes », dispositifs comprenant plusieurs fonctions méca-niques, électroniques, optiques intégrées et utilisant à plein une des fonctions principales permises par les matières plastiques, l’intégration de fonctions.
Cette tendance du marché repousse toujours plus loin les limites de la transformation des matières plastiques et l’objet de cet article est de rappeler les règles de base et les limites actuelles des procédés traditionnels, de proposer des approches et d’ouvrir sur les nouveaux moyens en cours de développement qui seront mis à la disposition des industriels dans les prochaines années.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Rappel des principes théoriques et application à la microplasturgie
1.1 Présentation de quelques pièces
La demande en micropièces n’a fait que croître ces dernières années, poussée plus particulièrement par certains secteurs industriels comme l’électronique, le médical ou les télécommunications.
La recherche de miniaturisation relève néanmoins d’une motivation différente selon ces secteurs, par exemple, le secteur de l’électronique en densifiant les circuits intégrés pour élever les performances des ordinateurs a été rapidement confronté à un problème de connectique.
-
L’utilisation des matières plastiques pour la réalisation des connecteurs d’ordinateurs est indissociable de l’évolution de ce secteur (les cosses de connexion étaient réalisées en résine phénolique depuis les années 1940, les propriétés des matières plastiques permettant une bonne isolation électrique).
L’augmentation de la vitesse de traitement de l’information, ainsi que le développement des systèmes dits « déportés », donc devant être interconnectés entre eux et de moins en moins encombrants, ont amené les fabricants de connecteurs à concevoir des pièces de plus en plus denses et de petites dimensions.
Les connecteurs pour les applications de télécommunication sont ceux ayant subi la plus grande évolution dans le sens de la miniaturisation ; on réalise aujourd’hui des connecteurs pour la téléphonie mobile comportant 60 contacts sur une hauteur de 1 mm.
-
La miniaturisation des dispositifs dans le secteur du matériel médical est stimulée par le développement des techniques de chirurgie minimale invasive et des dispositifs de délivrance locale de médicaments. Ainsi, les cathéters multilumières actuellement développés permettent de disposer de plusieurs voies d’accès au système veineux du patient pour un seul point de ponction.
Les cathéters de chirurgie cardiaque permettent de placer des stents (prothèse artérielle) à l’intérieur des artères afin de rétablir la circulation sanguine sans procéder à un acte chirurgical lourd. Ces derniers produits ont nécessité le développement de ballons permettant la dilatation des stents, d’une épaisseur de quelques dizaines de micromètres et d’un diamètre...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Rappel des principes théoriques et application à la microplasturgie
BIBLIOGRAPHIE
-
(1) - AGASSANT (J.-F.) et al - Polymer Processing (La mise en forme des matières plastiques). - Carl Hanser Verlag, 475 p. (1991).
-
(2) - MICHAELI (W.) - Extrusion dies for plastics and rubber : design and engineering computations. - Carl Hanser Verlag, 340 p. (1992).
-
(3) - REES (H.) - Mold engineering. - Carl Hanser Verlag, 621 p. (1995).
-
(4) - SFIP (Société Française des ingénieurs des plastiques) - Dernières évolutions en microplasturgie. - SFIP Le Diamant (1998).
-
(5) - ALVAREZ (T.R.), GUTIERREZ (J.), RUSSELBURG (M.) - High speed injection of thin-wall polycarbonate tubes (Injection haute vitesse de tubes en polycarbonate à parois fines). - Medical Plastics and biomaterials, SPE technical paper, Canon communications LLC, USA, p. 42-44, juil.-août 1997.
-
(6) - BEEVERS (A.) - Micro...
1 À lire également dans nos bases
AGASSANT (J.-F.) - VINCENT (M.) - Modélisation de l'injection – Remplissage des moules. - [AM 3 695] Traité Plastiques et Composites (2000).
AGASSANT (J.-F.) - VINCENT (M.) - Modélisation de l'injection – Compactage et contraintes résiduelles. - [AM 3 696] Traité Plastiques et Composites (2001).
BELLET (M.) - MONASSE (B.) - AGASSANT (J.-F.) - Simulation numérique des procédés de soufflage. - [AM 3 705] Traité Plastiques et Composites (2002).
CARROT (C.) - GUILLET (J.) - Viscoélasticité linéaire des polymères fondus. - [AM 3 620] Traité Plastiques et Composites (1999).
CARROT (C.) - GUILLET (J.) - Viscoélasticité non linéaire des polymères fondus. - [AM 3 630] Traité Plastiques et Composites (2000).
CHATAIN (M.) - DOBRACZYNSKI (A.) - Injection des thermoplastiques : les moules. - [A 3 680] Traité Plastiques et Composites (1995).
JAMMET (J.-C.) - Thermoformage. - [AM 3 660] Traité Plastiques et Composites (1998).
MOUSSEAU (P.) - SARDA (A.) - DETERRE (R.) - Thermique de l'injection des thermoplastiques. Fondements. - [AM 3 684] Traité Plastiques et Composites (2005).
MOUSSEAU (P.) - SARDA (A.) - DETERRE (R.) - Thermique de l'injection des thermoplastiques. Optimisation. - [AM 3 685]...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive