Présentation
EnglishAuteur(s)
-
Michel FONTANILLE : Professeur émérite de l'Université Bordeaux 1
-
Yves GNANOU : Directeur de Recherche au CNRS - Université Bordeaux 1 – ENSCPB – CNRS. Pessac
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Dans le dossier [AM 3 037], nous avons décrit les différents types de structures qui gouvernent la géométrie de la macromolécule isolée : assemblage des atomes, des unités monomères, tacticité et architectures conformationnelles. Une relation étroite existe entre ce niveau structural et les propriétés mécaniques et thermo-mécaniques du matériau final. Cependant, nombre de ces propriétés ne peuvent être interprétées qu'au travers d'échelles structurales intermédiaires qui impliquent l'assemblage d'un nombre plus ou moins grand de chaînes macromoléculaires.
Le comportement des polymères à l'état solide – par opposition à l'état caoutchouteux ou encore visqueux – résulte des deux formes d'organisations que peuvent adopter les chaînes macromoléculaires, à savoir celles du cristal et celle du verre. Dans un cristal, les chaînes de polymères sont organisées selon un ordre tridimensionnel tandis que, dans un verre, les chaînes macromoléculaires sont par essence à l'état amorphe.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Mélanges de polymères
Mélanger des polymères de nature chimique différente avec, pour perspective, l'élaboration de matériaux polymères originaux est une démarche a priori très séduisante. La science des matériaux offre, en effet, maints exemples d'alliages – en particulier de métaux – dont les propriétés sont bien supérieures à celles des composés de départ. De plus, élaborer un matériau original à partir d'un mélange de polymères semble, au premier abord, moins coûteux et moins aléatoire que synthétiser un polymère inconnu à partir d'un nouveau monomère.
Les faits expérimentaux infirment malheureusement cette vision simpliste car, dans la majorité des cas, la règle qui prévaut dans le domaine des polymères est celle de l'immiscibilité des entités macromoléculaires de nature chimique différente. L'incompatibilité des polymères entre eux provoque leur démixtion et se trouve être la cause principale des propriétés médiocres qui caractérisent la plupart des mélanges de polymères. Tout au plus, peut-on attendre des mélanges incompatibles qui possèdent des propriétés intermédiaires à celles des constituants de départ.
Il existe, cependant, quelques exemples de mélanges polymères homogènes.
le plus connu d'entre eux est certainement le Noryl ®, de GE Plastics BV, obtenu par mélange de polystyrène (PS) et de poly(oxyphénylène) (PPO). On peut également citer les mélanges de PS avec le poly(vinylméthyléther) (PVME) et de PVC avec le PMMA.
L'acuité du phénomène d'immiscibilité des polymères provient de leur taille – donc de leur faible entropie de mélange –, mais aussi de leur répulsion mutuelle. Pour en maîtriser les effets voire, dans certains cas, en tirer avantage, il faut examiner les causes thermodynamiques de l'incompatibilité des polymères.
4.1 Thermodynamique des mélanges
Comparer les mélanges de polymères avec des systèmes constitués de petites molécules permet de comprendre la tendance qu'ont les macromolécules à se séparer en phases distinctes. Si l'on prend, pour ce faire, un réseau tel que ceux représentés sur la figure 26, dans lequel chaque case est occupée...
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mélanges de polymères
BIBLIOGRAPHIE
-
(1) - GNANOU (Y.), FONTANILLE (M.) - Organic and Physical Chemistry of Polymers. - Wiley Interscience, New York (2008).
-
(2) - SPERLING (L.) - Introduction to Physical Polymer Science. - 4e Édition. Wiley Interscience, New York (2006).
-
(3) - WUNDERLICH (B.) - Macromolecular Physics. - Academic Press, New York, vol. 1 (1973), vol. 2 (1976), vol. 3 (1980).
-
(4) - ELIAS (H.G.) - Macromolecules (vol. 3), Physical Structures and Properties. - Wiley (2008).
-
(5) - MARK (H.F.) (édit.) - Encyclopedia of polymer Science and Technology. - Wiley, New York, 3e édition (12 volumes) (2004).
-
(6) - SUN (F.) - Physical chemistry of Macromolecules – Basic Principles and Issues - . Wiley Interscience, New York (1994).
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Groupe Français d'Étude et d'Applications des Polymères http://www.gfp.asso.fr/
Polymer Division de l'American Chemical Society http://www.polyacs.org/
American Chemical Society – Division of Polymeric Materials : Science and Engineering http://membership.acs.org/P/PMSE/
International Union of Pure and Applied Chemistry – Polymer Division http://www.iupac.org/web/ins/400
HAUT DE PAGECet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive