Présentation
En anglaisRÉSUMÉ
La maîtrise du procédé de formage à grande vitesse impose la connaissance des paramètres de frottement, qui peuvent selon le cas s’avérer favorable ou défavorable à la mise en forme. Dans le laminage, il permet à l’outil d’entraîner le matériau ; par contre, dans l’usinage ou le tréfilage, ce frottement, responsable de défauts de surface des pièces, est réduit au maximum. Sur la base des lois de frottement et de la loi de comportement du matériau, il est possible d’établir une méthodologie permettant de déterminer un coefficient de frottement entre un outil et un matériau, ceci pour différents lubrifiants et types de sollicitations.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Auteur(s)
-
Marc MANTEL : Docteur en métallurgie, Responsable du Département Mise en forme des aciers au Centre de Recherches d’Ugitech
-
Christophe VACHEY : Département Mise en forme des aciers du Centre de Recherches d’Ugitech
INTRODUCTION
Ce document doit se lire à la suite du dossier Formage à grande vitesse- Détermination d’une loi de comportement qui traite de la détermination d’une loi de comportement par simulation numérique.
La connaissance des paramètres de frottement est fondamentale pour la maîtrise de l’opération de formage à grande vitesse. Le rôle du frottement dans les procédés de mise en œuvre à grande vitesse peut être positif ou négatif. Lorsque l’un des outils est moteur, comme dans le laminage, alors le frottement est nécessaire pour engager et entraîner le produit dans l’emprise. Lorsque l’outil n’est pas moteur comme pour le tréfilage ou l’usinage, alors le frottement est parasite et il entraîne une augmentation des efforts et de la température de l’outil, des défauts de surface voire la rupture du produit pour le tréfilage, ainsi qu’une usure accélérée de l’outillage. Nous décrivons une méthodologie pour déterminer un coefficient de frottement entre un outil et un matériau pour différents lubrifiants et types de sollicitation. En utilisant la loi de comportement du matériau, ainsi qu’une loi de frottement, et en soumettant le matériau à des essais rhéologiques proches des conditions de formage, on peut déterminer le coefficient de frottement en simulant par un calcul numérique l’essai de déformation.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mécanique > Frottement, usure et lubrification > Travail des matériaux, mise en forme et tribologie > Formage à grande vitesse - Lubrification et frottement > Examen de la surface supérieure après écrasement
Cet article fait partie de l’offre
Mise en forme des métaux et fonderie
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Examen de la surface supérieure après écrasement
La mesure de la hauteur résiduelle doit permettre d’obtenir des informations sur le frottement au cours de la frappe, toutefois, les différences mesurées entre deux lubrifiants sont parfois très faibles. Nous nous sommes donc intéressés à la surface plane après écrasement. C’est en effet cette surface qui supporte les efforts de cisaillement, et sa forme diffère selon la valeur du coefficient de frottement comme on peut le constater figure 8. Sur ce graphique, on voit l’évolution de la surface supérieure, lors d’une frappe longitudinale à 90 J. Le frottement entraînant une dissipation d’énergie, on retrouve la même observation que pour l’épaisseur : plus le frottement est important, moins l’échantillon se déforme. Le rectangle précise l’orientation de l’échantillon.
Le calcul numérique donne des résultats acceptables pour les expansions sens long et sens travers, mais des écarts concernent les angles. Dans l’exemple donné, la surface obtenue se situe entre les surfaces théoriques correspondant à µ = 0,2 et µ = 0,3.
Dans le cas de la frappe axiale, la surface initialement plane présente deux zones après l’écrasement. Une zone centrale, plus ou moins circulaire, d’aspect mat, qui représente la surface circulaire de départ et une couronne extérieure, très brillante, qui provient de la surface cylindrique de l’échantillon de départ (figure 9). Contrairement à la frappe longitudinale, on ne prend pas en compte toute la surface en contact avec l’outil à la fin de l’impact, mais l’évolution de la surface initialement plane.
Pour vérifier ce comportement par la simulation, il est nécessaire de définir, par la fonction « marquage » de Forge3, un disque circulaire dont on souhaite suivre l’évolution au cours de la frappe. Pour les échantillons expérimentaux, la surface mate située au centre est mesurée à l’aide d’une loupe binoculaire couplée avec une caméra numérique. L’évolution de cette surface en fonction du frottement pour une frappe axiale d’énergie 150 J est donnée figure 10. La courbe en trait plein correspond aux relevés théoriques et sert de référence pour placer les points expérimentaux. La droite en trait plein correspond à la section...
Cet article fait partie de l’offre
Mise en forme des métaux et fonderie
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Examen de la surface supérieure après écrasement
BIBLIOGRAPHIE
-
(1) - FELDER (E.) - Le contact métal-outil en mise en forme des métaux. - Séminaire organisé à Sophia Antipolis (France), 22-26 mai 1989.
-
(2) - GEORGES (J.M.) - Frottement, usure et lubrification. - CNRS et Eyrolles Éd. (2000).
-
(3) - SCHEY (J.A.) - Friction, Lubrification and wear. - Tribology in metal working, American Society for metals, Metals Park, Ohio 44073 USA (1983).
-
(4) - GAVRUS (A.) et al - Identification of the friction coefficients directly from a forging process. - Euromech 435, Valenciennes, France, 18-20 juin 2002.
-
(5) - BAY (N.) et al - An empirical model for friction in cold forging, Friction and wear in metal forming. - Euromech 435, Valenciennes, France, 18-20 juin 2002.
-
(6) - OUDIN (J.), RAVALARD (Y.) - Contribution à la détermination des lois de comportement des métaux...
Cet article fait partie de l’offre
Mise en forme des métaux et fonderie
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive