Présentation

Article

1 - ASPECTS GÉNÉRAUX

2 - DESCRIPTION GÉOMÉTRIQUE ET CINÉMATIQUE DES PROCÉDÉS

3 - PHÉNOMÈNES PHYSIQUES FONDAMENTAUX

4 - MISE EN ŒUVRE DES PRINCIPAUX PROCÉDÉS

5 - PRÉSENTATION DE LA RUBRIQUE

6 - CONCLUSION

7 - GLOSSAIRE

Article de référence | Réf : M3000 v2

Présentation de la rubrique
Mise en forme des métaux - Aspects mécaniques et thermiques

Auteur(s) : Eric FELDER

Date de publication : 10 nov. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Après avoir situé l’importance économique du domaine de la mise en forme des métaux, l’article présente l’ensemble des procédés de fabrication des pièces métalliques, puis décrit de manière détaillée les opérations de mise en forme par déformation plastique avec et sans enlèvement de matière. Il précise ensuite la géométrie et la cinématique des différents procédés, puis les phénomènes physiques fondamentaux mis en jeu dans la mise en forme,  et  les modalités de la mise en œuvre pratique des procédés selon la  température et la nature des principaux alliages (base fer, aluminium et cuivre).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Eric FELDER : Ingénieur civil des Mines de Paris, docteur es Sciences Physiques, - Maître de Recherches honoraire MINES ParisTech – CEMEF (Centre de Mise en Forme des Matériaux), Sophia-Antipolis, France

INTRODUCTION

Les matériaux métalliques représentent une des trois grandes classes de matériaux utilisés par l’industrie manufacturière, aux côtés des matériaux de construction (bétons, agrégats minéraux…) et des polymères naturels (cellulose extraite du bois pour fabriquer du papier, bois d’ameublement ou de construction) et tirés du pétrole (polyéthylène…). En outre, ce sont des composants de matériaux composites de grande importance : fils d’acier pour renforcer les bétons ou les pneumatiques, liants des carbures cémentés, comme les carbures de tungstène liés par une matrice cobalt et utilisés comme outils en usinage, forge à froid, tréfilage ou comme éléments de roulements (billes…). Ils présentent en outre l’avantage de pouvoir être recyclés facilement et réutilisés à moindre coût sans perte de performances. La plupart des objets métalliques d'utilisation courante ont subi plusieurs opérations de mise en forme à l'état massif ou/et à l’état de feuilles. La mise en forme des métaux et alliages métalliques a donc une importance économique non négligeable et correspond, pour un pays développé, généralement à quelques pourcents du produit national brut.

Traditionnellement, la mise en forme d'une pièce métallique est suivie d'un traitement thermique permettant de conférer à la pièce la microstructure et les propriétés mécaniques requises par son utilisation, voire d'un traitement de surface pour maîtriser ses propriétés superficielles : rugosité, propriétés mécaniques, chimiques et tribologiques. Les techniques de la mise en forme ont fortement évolué depuis les années 1960 : elles visent maintenant à fournir directement des pièces ayant une géométrie, une rugosité, une microstructure et des propriétés mécaniques vérifiant un cahier des charges donné tout en économisant au maximum énergie et matière, notamment les éléments d’alliage rares et chers.

Au total, la mise en forme des matériaux métalliques est un secteur industriel très important, de haute technicité et en évolution constante, avec grand nombre de problèmes, dont la résolution nécessite le recours massif à des moyens très performants, comme le développement d’essais et les techniques informatiques. L’informatique est utilisée pour trois raisons principales :

  • le contrôle et la conduite de procédés,

  • la constitution, la gestion et l’utilisation de banques de données sur les matériaux, les procédés…,

  • le calcul scientifique pour simuler numériquement une opération ou la chaîne des opérations (mises en forme, traitements thermiques) afin de concevoir les opérations (établir la faisabilité, estimer le prix de revient de pièces), de résoudre les problèmes de mise au point (suppression de défauts de pièces), d'optimiser les opérations pour améliorer la productivité (réduction des énergies de mise en œuvre et/ou de la quantité de matière utilisée, amélioration de la durée de vie des outils).

Il n'est donc pas étonnant que la mise en forme représente un des principaux débouchés du marché de la Productique, l'activité centrée sur l'application de l'informatique aux procédés de fabrication et positionnée devant le matériel de transport terrestre, la construction électrique et électronique, et la mise en forme des polymères.

Il importe en général d'essayer de tirer parti au mieux, et de manière complémentaire, des performances des divers procédés de mise en forme, avec et sans enlèvement de matière, à l'état massif comme à l'état de feuilles, pour bâtir la gamme de fabrication la plus économique possible. Le concepteur a donc intérêt, sinon à disposer de la panoplie la plus large possible de procédés de mise en forme, du moins à bien connaître l'état actuel de leurs possibilités techniques. L'un des objectifs de cet article est donc d'effectuer une présentation générale de ces divers procédés, sous leurs divers aspects techniques et scientifiques, pour faciliter ce choix et orienter le lecteur vers les articles de la rubrique, où il pourra trouver une description plus détaillée des procédés et des divers aspects de ce secteur industriel.

L’article présente l’ensemble des procédés de fabrication des pièces métalliques, puis décrit de manière détaillée les opérations de mise en forme par déformation plastique avec et sans enlèvement de matière. La géométrie et la cinématique des différents procédés, les phénomènes physiques fondamentaux, puis les modalités de la mise en œuvre pratique des procédés selon la température et la nature des principaux alliages (base fer, aluminium et cuivre) sont abordés. Il termine par une présentation de la rubrique « Mise en forme des métaux et fonderie ».

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-m3000


Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Présentation de la rubrique

La rubrique « Mise en forme des métaux et fonderie » couvre l’ensemble de ces problématiques et est subdivisée en cinq grandes parties.

  • Mise en forme des métaux : aspects mécaniques et thermiques

    Cette partie regroupe les articles décrivant la plasticité des métaux à chaud et à froid, l’analyse mécanique des procédés de mise en forme et les effets thermiques de la mise en forme. Elle se termine par un article sur le réchauffage par induction lors de la transformation des métaux et un article sur la soudabilité des matériaux métalliques, deux articles décrivant la réaction du métal à de forts échauffements.

  • Mise en forme des aciers, aluminium, autres métaux et alliages

    Cette partie regroupe les divers articles décrivant les principaux procédés de mise en forme des aciers, des alliages d’aluminium, du zinc et de ses alliages, des alliages de titane, et des aciers et alliages réfractaires.

  • Mise en forme des métaux : aspects rhéologiques et métallurgiques

    Cette partie regroupe des articles décrivant l’évolution de la microstructure (taille des grains et sous-grains, densité de dislocations, texture cristallographique) des métaux lors de la mise en forme à froid et à chaud, et de leur endommagement. Un article présente la modélisation de la rhéologie des matériaux multiphasés. Elle présente aussi les essais permettant de caractériser la rhéologie des métaux à chaud, à grande vitesse de déformation et le frottement dans le formage à grande vitesse. Elle se termine par la présentation des procédés de mise en forme des métaux à l’état semi-solide et le formage superplastique.

  • Mise en forme des métaux : lubrification, laminage et emboutissage

    Cette partie présente les modes et régimes de lubrification en mise en forme, ainsi que les essais de caractérisation du frottement. Elle présente la modélisation mécanique du laminage à froid (le cas du laminage à chaud étant traité dans la rubrique laminage des volumes Élaboration et recyclage des métaux), la fabrication de tubes et de rails par laminage et l’aspect métallurgique du laminage des tôles sur trains continus. Deux articles présentent...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation de la rubrique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHENOT (J.L.), FOURMENT (L.), HACHEM (E.), PERCHAT (E.), (P.) -   Recent and future developments in finite element metal forming simulation.  -  11th International Conference on Technology of Plasticity, ICTP 2014, Nagoya Congress Center, Nagoya, Japan, 22 p. (19-24 October 2014).

  • (2) - BONTE (M.H.A.), FOURMENT (L.), DO (T.-T.), VAN DEN BOOGAARD (A.H.), HUETINK (J.) -   Optimization of forging processes using Finite Element simulations A comparison of Sequential Approximate Optimization and other algorithms.  -  Struct Multidisc Optim 42 797-810 (2010).

  • (3) - DUCLOUX (R.), FOURMENT (L.), MARIE (S.), MONNEREAU (D.) -   Automatic optimization techniques applied to a large range of industrial test cases.  -  Int J Mater Form. 3 Suppl 1 : 53-56 (2010).

  • (4) - PUGH (H.L.D.) (Ed.) -   The mechanical behaviour of materials under high pressure.  -  Appl. Sc. Publ. Ltd, London p. 391 (1971).

  • (5) - BAQUE (P.), FELDER (E.), HYAFIL (J.), D'ESCATHA (Y.) -   Mise en Forme des Métaux – Calculs en plasticité.  -  Dunod,...

1 Outils logiciels

Transvalor a développé une suite de logiciels de simulation hautement performants, qui couvrent une vaste gamme de procédés de formage des matériaux métalliques solides et liquides, ainsi que des polymères :

  • FORGE® pour la mise en forme du métal à très haute température, à chaud et à froid ;

  • COLDFORM® pour le formage des métaux à froid ;

  • THERCAST® pour la coulée en lingotière et les procédés de fonderie en continu ;

  • Rem3D® pour l’injection des matériaux polymères.

http://www.transvalor.com/fr/

http://www.3ds.com/products-services/simulia/products/abaqus/

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS