Présentation

Article

1 - MÉTALLURGIE EXTRACTIVE

2 - PRODUCTION. MISE EN ŒUVRE

  • 2.1 - Métallurgie des poudres
  • 2.2 - Fusion à l’arc ou par faisceau d’électrons
  • 2.3 - Autres méthodes de consolidation
  • 2.4 - Façonnage
  • 2.5 - Décapage et nettoyage
  • 2.6 - Soudage. Brasage
  • 2.7 - Usinage
  • 2.8 - Revêtements protecteurs

3 - PROPRIÉTÉS PHYSIQUES

4 - PROPRIÉTÉS MÉCANIQUES

5 - PROPRIÉTÉS CHIMIQUES

  • 5.1 - Généralités
  • 5.2 - Oxydation
  • 5.3 - Réaction avec les réfractaires et les métaux liquides
  • 5.4 - Propriétés électrochimiques
  • 5.5 - Analyse

6 - ALLIAGES

7 - DOMAINES D’APPLICATION

  • 7.1 - Tungstène non allié et tungstène dopé
  • 7.2 - Alliages et composites
  • 7.3 - Composés

Article de référence | Réf : M570 v1

Propriétés chimiques
Propriétés du tungstène et de ses alliages

Auteur(s) : Henri PASTOR

Date de publication : 10 oct. 1985

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Henri PASTOR : Chef du laboratoire Ugicarb Morgon et Eurotungstène Poudres

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le tungstène étant le plus réfractaire des métaux, les techniques de consolidation par fusion à l’arc ou par faisceau d’électrons sont relativement récentes et limitées aux laboratoires. Elles conduisent malheureusement à un métal fortement recristallisé et exceptionnellement fragile aux joints de grains. De sorte que la production commerciale actuelle de tungstène ouvré fait essentiellement appel aux techniques de la métallurgie des poudres, voie brillamment ouverte pour ce métal, en 1910, par Coolidge.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m570


Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Propriétés chimiques

Nota :

le lecteur consultera également les références [5] [12] [13] en .

5.1 Généralités

Les états d’oxydation du tungstène s’étalent de – 2 à + 6. Les états inférieurs – 2 à + 1 n’existent que dans des composés organométalliques, et les supérieurs (+ 6 notamment) correspondent à des propriétés acides.

À température ambiante le tungstène massif n’est attaqué que par le fluor gazeux et le mélange nitro-fluorhydrique. L’eau régale (HCI + HNO3) et les bases (NaOH, KOH) ne l’attaquent qu’en présence d’oxydant (H2O2 ou K3 [Fe(CN)6 ]). Vers 250 oC il se dissout rapidement dans l’acide phosphorique ou le nitrate de potassium fondu et il réagit avec le chlore. Vers 500 oC, il commence à réagir avec l’air, l’oxygène et les vapeurs d’acide chlorhydrique. Au rouge vif (700 à 800 oC) il réagit avec le brome, l’iode, la vapeur d’eau, le monoxyde de carbone, le sulfure de carbone, l’ammoniac, le dioxyde de soufre, le dioxyde d’azote et les hydrocarbures. Il s’oxyde dans le gaz carbonique à 1 200 oC. Entre 1 000 et 2 500 oC il forme des composés avec de nombreux métaux et non-métaux [2]...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Propriétés chimiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  + historique de la question

  • (2) -   *  -  * étude théorique de la question

  • (3) -   *  -  • comporte des résultats d’essais de laboratoire

  • (4) -   *  -  △ comporte des résultats pratiques ou industriels

  • (5) -   *  -  ○ étude technologique de la question

  • (6) -   *  -  □ description d’appareillages ou d’installations

  • (7) - WEEKS (M.E.) -   Discovery of the elements (La découverte des éléments).  -  910 p., Chap. 9 : p. 253-83, bibl. (97 ref.) ; Chap. 10 :...

NORMES

  • Test method for apparent density of powders of refractory metals and compounds by the Scott volumeter. - B 329-81 -

  • Test method for average particle size of powders of refractory metals and compounds by the Fisher sub-sieve sizer. - B 330-82 -

  • Test method for particle size distribution of refractory metal-type powders by turbidimetry. - B 430-79 -

  • Practice for preparation of tungsten and tungsten alloys for electroplating. - B 482-68 - 1979

  • Test method for tap density of powders of refractory metals and compounds by Tap-Pak volumeter. - B 527-81 -

  • Test method for hydrogen loss of copper, tungsten and iron powders. - E 159-68 - 1979

  • Specifications for tungsten-rhenium alloy wire for electron-devices and lamps. - F 73 -

  • Test method for surface flaws in tungsten seal rod and wire. - ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS