Présentation
EnglishAuteur(s)
-
Jean-Michel FALGUIÈRE : Ingénieur Civil, Université catholique de Louvain, BelgiqueZenite LCP, Product Manager, Europe
-
Marion WAGGONER : PhD in Physical Chemistry, Yale University - Senior Technology Fellow
-
Michael R. SAMUELS : Master of Science in Chemical Engineering, University of Michigan - Doctor of Philosophy in Chemical Engineering, University of Michigan - Senior Technology Fellow - Société Du Pont de Nemours
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Dans les liquides, les atomes ou molécules individuels sont répartis au hasard et la connaissance de la position de l’un quelconque d’entre eux ne donne aucune indication sur la position des autres.
Dans les solides cristallins, les atomes (ou les molécules) occupent des positions définies par le réseau cristallin et la connaissance de la position de l’un des atomes (ou molécules) définit la position des autres.
Les cristaux liquides (CL) ont à la fois des caractéristiques propres aux liquides et aux solides cristallins.
Sur des distances courtes (environ 10 nm), les CL sont hautement organisés. Dans de petites régions de l’espace, appelées domaines, les atomes et les molécules sont disposés les uns par rapport aux autres comme dans les solides cristallins. Cette organisation est élevée au point que les CL réfractent les radiations électromagnétiques telles que les rayons X ou la lumière visible ce qui leur donne un aspect diffus, translucide indiquant la présence d’un liquide multiphase.
Cependant, même à l’intérieur des domaines, les forces interatomiques ou moléculaires sont relativement modérées et ceux-ci peuvent être facilement déformés sous l’effet de contraintes de cisaillement.
À plus grande distance, il y a peu d’interactions interatomiques ou moléculaires et le matériau se présente comme un liquide conventionnel. Les CL représentent donc un nouvel état de la matière et sont à la fois distincts des liquides et des solides.
Dans chacun des domaines, les propriétés physiques dépendent de la direction de la mesure. Ceux-ci sont donc hautement anisotropes. Lorsque le CL est à l’état de relaxation, cette anisotropie est peu sensible, les domaines étant orientés au hasard. À l’inverse, sous l’effet d’une contrainte de cisaillement ou de celle induite par son écoulement, le CL devient hautement anisotrope. Cet effet est à l’origine d’applications existantes ou potentielles.
Les matériaux susceptibles de f ormer des cristaux liquides peuvent aussi, suivant la température, prendre la forme solide ou liquide (cf. encadré).
À température suffisamment basse, ils formeront des solides cristallins ; à l’inverse, à température suffisamment haute, supérieure à la température dite « température d’éclaircissement », où l’énergie des atomes et des molécules est supérieure aux forces interatomiques ou moléculaires, ils formeront des liquides isotropes.
Pour les polymères à cristaux liquides, la température d’éclaircissement est généralement supérieure à la température de décomposition de ceux-ci. Son intérêt est donc purement académique.
Les CL sont naturellement composés de molécules comprenant des segments linéaires rigides (d’une longueur > 20 Å (2 nm) selon P. Flory [1]) avec des rapports L/D (longueur/diamètre) élevés. Des atomes individuels ou des molécules simples ne peuvent donc constituer des CL.
Si la molécule constituant le CL est unique, il s’agit d’un CL monomérique. Si, au contraire, la molécule est constituée de nombreux monomères (identiques ou non), on parlera de polymère à cristaux liquides « PCL », sujet de cet article.
Pour mémoire, les écrans à cristaux liquides utilisent un CL monomérique entre deux lames de verre ou deux films plastiques. Lors de l’application d’un faible champ électrique, les domaines cristallins s’orientent et le CL réfracte la lumière, faisant apparaître des caractères.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux actifs et intelligents > Polymères à cristaux liquides (PCL) thermotropes > Mise en œuvre des PCL
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Mise en œuvre des PCL
4.1 Films et fibres
À l’heure actuelle, la très grande majorité des applications des PCL est réalisée en injection moulage. Les autres procédés de transformation sont encore peu ou pas utilisés.
Les films et les fibres de PCL sont obtenus à partir de polymères généralement non renforcés. Les fibres, qui sont réalisées à partir de polymères de faible viscosité, donc de faible masse moléculaire, sont fragiles.
Dans les années 1970, la société Du Pont de Nemours découvrit qu’une postpolymérisation des fibres à une température d’environ 300 C améliorait de façon importante les propriétés des fibres, jusqu’à leur donner une résistance voisine à celles des fibres aramides Kevlar® (marque déposée par Du Pont de Nemours).
HAUT DE PAGE4.2 Moulage par injection
-
Température du fondu. Temps de remplissage
Si les PCL sont des matériaux très fluides à la température de transformation (figure 15), leur enthalpie massique de fusion est cependant très faible (voir figure 13).
Il en résulte qu’ils ont tendance lors de l’injection à se solidifier prématurément. On veillera donc à cisailler la matière tout au long de son trajet vers la cavité en dimensionnant de façon appropriée les carottes, canaux d’alimentation et points d’injection et en utilisant des temps de remplissage très courts (0,1 à 0,3 s).
La température du polymère fondu sera, pour les mêmes raisons, maintenue suffisamment élevée par rapport au point de fusion (Tfondu > Tfusion + 15 C).
-
Épaisseur de parois. Bavures
La haute fluidité des PCL a deux avantages majeurs : l’un est leur capacité de remplir des parois de très faible épaisseur (jusqu’à 0,2 mm !) ; l’autre, plus surprenant, est de ne pour ainsi dire pas faire de bavures....
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mise en œuvre des PCL
ANNEXES
1 Données statistiques et économiques
-
Production. Consommation
La capacité de production des PCL avoisine les 20 000 tonnes à ce jour pour une consommation voisine.
L'utilisation des PCL est en forte croissance (% à deux chiffres) en raison de l'évolution des technologies et de la protection de l'environnement dans la plupart des industries.
-
Prix
Les prix des PCL sont devenus très compétitifs ces dernières années, se situant aux alentours de 20 euros/kg (plus ou moins selon les volumes et la composition).
Cet article fait partie de l’offre
Plastiques et composites
(397 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive