Présentation

Article

1 - ALLIAGES DE NICKEL

  • 1.1 - Nickel non allié et faiblement allié (Ni)
  • 1.2 - Alliages nickel-cuivre (Ni-Cu)
  • 1.3 - Alliages nickel-chrome (Ni-Cr)
  • 1.4 - Alliages nickel-fer-chrome (Ni-Fe-Cr) et nickel-chrome-fer (Ni-Cr-Fe)
  • 1.5 - Alliages nickel-molybdène (Ni-Mo)
  • 1.6 - Alliages nickel-chrome-molybdène et nickel-molybdène-chrome (Ni-Cr-Mo)
  • 1.7 - Alliage nickel-chrome-silicium (Ni-Cr-Si)

2 - RÉSISTANCE À LA CORROSION GÉNÉRALISÉE

  • 2.1 - Acide sulfurique
  • 2.2 - Acides halogénés
  • 2.3 - Acide nitrique
  • 2.4 - Acide phosphorique
  • 2.5 - Acides organiques
  • 2.6 - Milieux caustiques

3 - RÉSISTANCE À LA CORROSION LOCALISÉE

  • 3.1 - Corrosion localisée
  • 3.2 - Corrosion par les sels
  • 3.3 - Eau douce ou distillée et eau de mer

4 - CORROSION SOUS CONTRAINTE

  • 4.1 - Milieux halogénés chauds
  • 4.2 - Eaux à haute température
  • 4.3 - Milieux caustiques
  • 4.4 - Autres milieux

5 - CONCLUSION

6 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : COR312 v1

Conclusion
Résistance à la corrosion aqueuse des alliages de nickel

Auteur(s) : Patrice HOULLE

Relu et validé le 28 oct. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article traite de la résistance à la corrosion dans les milieux les plus corrosifs tels que les acides - sulfurique, chlorhydrique, fluorhydrique, bromhydrique nitrique, phosphorique ainsi que quelques acides organiques -, les milieux basiques. Il montre que les alliages de nickel sont résistants à la corrosion localisée - piqûres et corrosion caverneuse - dans les solutions salines et en particulier l'eau de mer. Enfin, il présente les caractéristiques de résistance à la corrosion sous contrainte dans des conditions reconnues comme très difficiles, par exemple les solutions chlorurées chaudes, ou les solutions acides en présence de sulfure d'hydrogène.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Aqueous Corrosion Resistance of Nickel-based Alloys

This article deals with corrosion resistance properties towards the main mineral acids - sulfuric, hydrochloric, hydrofluoric, hydrobromic, nitric, phosphoric and some organic – and also the caustics. It also shows that nickel-based alloys are resistant to localized corrosion, such as pitting and crevice corrosion, in salts and sea water. Their stress corrosion cracking resistance is also highlighted in very corrosive solutions such as brines at high temperature and hydrogen sulfide-containing acids.

Auteur(s)

  • Patrice HOULLE : Docteur-ingénieur (Institut national supérieur de chimie industriel de Rouen/Université de Rouen) - Président SAS Patrice Houlle Corrosion Service, Bormes-les-Mimosas, France

INTRODUCTION

Le nickel offre un ensemble de propriétés qui en font un métal très important. Il est relativement abondant sur la terre, très ductile, il possède un haut point de fusion et il est capable de dissoudre une importante quantité d'éléments d'addition tout en conservant la structure austénitique. C'est pourquoi, un grand nombre d'alliages de nickel ont été développés et brevetés depuis le début du XX e siècle. Certains d'entre eux, présentant une remarquable résistance à la corrosion à haute température, ont permis le développement des turbines aéronautiques ou terrestres, d'autres, pour leur résistance à la corrosion aqueuse, ont été des éléments importants du développement de la chimie moderne. Aujourd'hui, le nickel et ses alliages sont souvent un recours, au même titre que les métaux exotiques, dans les cas de corrosion difficiles dès que les aciers inoxydables, qu'ils soient ferritiques, austéno-ferritiques (duplex, superduplex, hyperduplex), austénitiques ou super- austénitiques, ne peuvent pas convenir pour l'application considérée. Les métallurgistes ont été créatifs, particulièrement au cours de ces dernières décennies et cet article a pour but d'orienter l'utilisateur potentiel vers la meilleure solution. Car tous ces alliages ne sont pas équivalents et un choix judicieux doit être effectué afin de sélectionner le ou les meilleurs alliages de nickel pour une application donnée.

Les alliages de nickel peuvent être classés en plusieurs familles en fonction de la teneur en éléments d'addition principalement le chrome, le molybdène, le tungstène, le cuivre. Le chrome est essentiel pour permettre la passivation en milieu oxydant, alors que le molybdène et le tungstène assurent la résistance aux milieux réducteurs. Ces familles permettent de regrouper les alliages présentant des caractéristiques de passivation sensiblement équivalentes en fonction des potentiels redox des milieux. Les alliages de nickel peuvent s'envisager pour résoudre différents types de corrosion :

  • la corrosion généralisée : les nombreuses comparaisons de résistance à la corrosion généralisée données dans cet article montrent que dans les acides chlorhydrique, fluorhydrique, bromhydrique, nitrique, phosphorique organiques ou les milieux basiques, tous ces alliages ne sont pas équivalents mais qu'il existe presque toujours une solution industrielle envisageable ;

  • la corrosion localisée : ils apportent un ensemble de solutions aux problèmes posés par la corrosion localisée initiée par les halogénures, comme l'apparition de piqûres et de corrosion caverneuse ou de fissures par corrosion sous contrainte.

Leur mise en œuvre ne pose pas de problèmes particuliers pour un homme de l'art, mais reste un élément primordial de leur bon comportement.

Dans cet article, nous traiterons de la résistance à la corrosion dans les milieux les plus corrosifs tels que les acides (sulfurique, chlorhydrique, fluorhydrique, bromhydrique, nitrique, phosphorique ainsi que quelques acides organiques), les milieux basiques. Nous montrerons que les alliages de nickel sont résistants à la corrosion localisée (piqûres et corrosion caverneuse) dans les solutions salines et en particulier l'eau de mer. Enfin nous présenterons les caractéristiques de résistance à la corrosion sous contrainte dans des conditions reconnues comme très difficiles, par exemple les solutions chlorurées chaudes, ou les solutions acides en présence de sulfure d'hydrogène.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

stress corrosion cracking   |   PREN   |   General Corrosion   |   Localized Corrosion Pitting   |   corrosion   |   acid   |   salts   |   sea water   |   Caustic Soda

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-cor312


Cet article fait partie de l’offre

Corrosion Vieillissement

(96 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Conclusion

Le nickel et ses alliages forment une famille de matériaux métalliques particulièrement utiles pour leur résistance à la corrosion aqueuse avec une solution au problème de corrosion dans pratiquement tous les milieux (basique ou acide ; oxydant ou réducteur). Il est donc particulièrement important de bien connaître leurs propriétés lorsque l'on choisit un matériau pour un équipement spécifique. Outre leur résistance à la corrosion uniforme, ils sont de bons remparts contre la corrosion localisée (piqûres, corrosion par effet de crevasse, corrosion sous contrainte). De nombreuses applications industrielles existent. En guise de conclusions, nous en citons quelques-unes :

  • production de soude caustique : Ni 200/201 ;

  • production d'énergie : eau pressurisée des centrales nucléaires : alliage 600/690 (Ni-Cr) ;

  • zone d'éclaboussures en eau de mer : alliage 400 (Ni-Cu) ;

  • échangeurs refroidis à l'eau de mer : alliages C-276 ; C-2000, 59 (Ni-Cr-Mo) ;

  • équipements de désulfuration d'effluents gazeux : alliage C-276, C-22, 59, 686 ;

  • traitement des effluents d'incinération de déchets industriels et ménagers : alliages C-276, C-22, C-2000, 59 ;

  • équipements sur acide sulfurique : alliages 825, G-30, C-276 B-3 ;

  • pétrochimie alkylation (catalyseur H2SO4) : alliage 825 ;

  • pétrochimie alkylation (catalyseurs HF) : alliage 400, alliage C-2000 ;

  • traitement effluents nitreux pollués : G-35 ;

  • équipements des unités d'acide acétique : alliages B-2/B-3, C-276, G-30.

Ces alliages possèdent une remarquable résistance à la corrosion dans l'état fourni par les métallurgistes fabricants qui ont parfois recours lors de leur élaboration, soit à une double fusion (coulée à l'air, affinage sous argon oxygène, refusion sous laitier), soit à une élaboration sous vide lors de la présence de titane. Toutefois, la résistance à la corrosion d'un équipement dépendra aussi de la qualité de la mise en œuvre. C'est donc par un choix judicieux d'un alliage et une mise en œuvre dans les règles de l'art que l'on obtiendra un équipement capable d'offrir un coût de maintenance réduit et une grande longévité.

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Corrosion Vieillissement

(96 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MONELL (A.) -   *  -  US patent 811239, 30 juin 1906.

  • (2) - MARSH (A.L.) -   *  -  US Patent 811859, E Haynes US Patent 873745/873746.

  • (3) -   Jubilee day : Stress corrosion cracking of nickel base alloys at CEA. 50 ans de corrosion sous contrainte des alliages de nickel au CEA. Effet Coriou Effect.  -  CEA-INSTN, Saclay (near Paris), EFC event, no 333, France (2010).

  • (4) - Haynes international -   *  -  Brochure H-2120, Haynes International inc 1020w Park avenue, Kokomo. In 46901 États-Unis http://www.haynesintil.com

  • (5) - SHRIDHAR (N.) -   Materials performance.  -  Vol. 27, no 3, 988, p. 40-46 (1988).

  • (6) - CRUM (J.R.), ADKINS, Nace 1985 (W.E.) -   Correlation of alloy 625 electrochemical behavior with the sulfuric acid corrosion chart,  -  p. 299 (1985).

  • ...

1 Brevets/marques déposées

Hastelloy, Haynes, B-3, C-22, C-22HS, C-2000, G-35, G-50, Hybrid-BC1 : marques enregistrées par Haynes International Inc.

Inconel, Incoloy, Monel : marques enregistrées par Special Metals Inc.

VDM 2120MoN : marque enregistrée par VDM-Metals.

Allcorr : marque enregistrée par ATI Allegheny Ludlum.

HAUT DE PAGE

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Corrosion Vieillissement

(96 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS