Présentation

Article

1 - TENUE À LA CORROSION DU TITANE

2 - PRINCIPES DE LA TENUE EN CORROSION

3 - ALLIAGES DE TITANE

4 - OXYDATION DU TITANE

5 - TENUE DU TITANE DANS LES GAZ AUTRES QUE L'AIR

6 - CORROSION GÉNÉRALISÉE

7 - CORROSION CAVERNEUSE

8 - CORROSION SOUS CONTRAINTE

9 - CORROSION PAR PIQÛRE

10 - CORROSION GALVANIQUE

11 - MILIEUX PARTICULIERS

12 - CAS PARTICULIER DES ALLIAGES Β

13 - CONCLUSION

Article de référence | Réf : COR320 v1

Cas particulier des alliages β
Corrosion du titane et de ses alliages

Auteur(s) : Yvon MILLET

Relu et validé le 30 nov. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le titane et ses alliages sont couramment utilisés pour leur bonne tenue en corrosion dans des milieux chlorurés, en particulier le milieu marin. Après un bref rappel des principes de la tenue en corrosion, cet article présente les différents alliages et leurs comportements dans une grande variété de milieux acides, basiques et organiques. Les alliages du titane sont principalement concernés. Les principes de la résistance à la tenue en corrosion (généralisée, caverneuse, sous contrainte, par piqûre, ou galvanique) sont donnés, ainsi que les limites d'utilisation. Pour finir, le cas des milieux particuliers est étudié.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Corrosion of titanium and titanium alloys

Commercially pure titanium and titanium alloys are currently used for their good corrosion resistance in various media with chlorides, epecially in the sea water environment and in chemical plants. After a brief review of the principles of corrosion resistance this article presents various alloys and their behavior in a large variety of acidic environments, basic and organic. Titanium alloys are primarily detailed. The key parameters for corrosion resistance (generlized, crevice, stess fractures, pitting, galvanic) are given together with the limits of titanium usage. In conclusion, the case of a particular enviroment is studied.

Auteur(s)

  • Yvon MILLET : Ingénieur civil des Mines - Directeur R de TIMET Savoie

INTRODUCTION

L'utilisation du titane a démarré dans les années 1950 sous l'impulsion de l'industrie aéronautique militaire, puis civile du fait de son excellent ratio résistance mécanique rapportée à sa densité. Mais environ un tiers de la production de titane métal est utilisé dans l'industrie des échangeurs thermiques et dans celle des appareils chimiques. Dans ce document, nous présentons les différents alliages utilisés en fonction des milieux chimiques ; des alliages ont été particulièrement développés pour des milieux agressifs et des solutions originales sont actuellement en développement pour proposer des solutions plus économiques. Les alliages de type β qui permettent d'obtenir des caractéristiques mécaniques supérieures à celles du titane non allié et des alliages α + β sont également présentés, avec l'influence des éléments d'addition sur la tenue en corrosion.

La tenue dans les gaz, dans les milieux acides, chlorurés, alcalins est précisée en fonction de la température et du potentiel hydrogène (pH). L'utilisation des inhibiteurs est également abordée. Le cas des mécanismes particuliers de corrosion, tels que la corrosion caverneuse et la corrosion par piqûres, est illustré. Les limites de l'utilisation du titane sont également présentées, elles concernent principalement les milieux fluorés.

Les caractéristiques du titane permettent donc une utilisation très économique dans le milieu de l'eau de mer, pour les échangeurs des centrales nucléaires de bord de mer, les usines de dessalement d'eau de mer qui se développent dans les pays du golfe Persique et plus généralement pour le matériel embarqué sur bateau et plate-forme off-shore.

Le titane est également très apprécié pour les appareils de l'industrie de procédés chimiques sous forme d'échangeurs à plaques ou à tubes, ainsi qu'en configuration plaqué sur acier : blanchiment de pâte à papier, fabrication d'engrais, pétrochimie, production d'acides organiques, traitement de minerais, traitement de déchets...

Par ailleurs, les conséquences de la pollution atmosphérique et des cours d'eau feront que le titane sera une solution économique pour garantir la durée de vie des installations.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

transport   |   Chemical Processing Industry   |   Energy production   |   Corrosion   |   metallic alloys

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-cor320


Cet article fait partie de l’offre

Corrosion Vieillissement

(96 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

12. Cas particulier des alliages β

Nous avons indiqué que les alliages β permettaient d'obtenir des caractéristiques mécaniques plus élevées que celle du TA6V et donc a fortiori que celles du titane non allié. Par ailleurs nous avons vu que certains éléments d'addition sont favorables à la tenue en corrosion. C'est pourquoi ces alliages peuvent être utilisés dans des appareils où il est nécessaire d'avoir des composants de plus forte résistance mécanique. Toutefois, il convient de signaler quelques limitations :

  • Les alliages contenant du vanadium, tels le Ti 6Al 4V et le Ti 15V 3Al 3Sn 3Cr, sont moins résistants aux acides réducteurs que le grade 2. Les alliages contenant du molybdène, du chrome sont plus résistants avec la température et sont donc préférés dans les industries de lavage acide de minerais et de forage profond. Le tableau 8 donne la concentration en acide chlorhydrique bouillant au-delà de laquelle la vitesse de corrosion dépasse 0,13 mm/an. La condition « revenu » correspond à la version hautes caractéristiques mécaniques de l'alliage, la condition « recuit » correspond aux caractéristiques minimales pour l'alliage. L'ajout de palladium améliore bien entendu la tenue à la corrosion.

    Ce classement est également valable pour la tenue à la corrosion caverneuse.

  • Dans le cas de l'oxydation, les éléments tels que vanadium, étain et zirconium sont néfastes. Les éléments molybdène, chrome, niobium, aluminium et silicium sont favorables. Le Ti 21S possède une remarquable résistance à l'oxydation jusqu'à 650 oC qui a conduit à son utilisation pour certaines tuyères d'échappement de moteurs d'avion type turboréacteurs. Les alliages fortement chargés permettent d'augmenter les conditions limites d'inflammation spontanée par rapport au grade 2, mais en fait uniquement l'alliage Ti 45Nb résiste jusqu'à la condition extrême 250 oC-oxygène pur à 3,1 MPa.

  • Dans le cas de la corrosion sous contrainte, ce sont les teneurs en aluminium et en étain qui sont néfastes, comme indiqué précédemment (dans les alliages β, le niveau d'oxygène est souvent bas). Les éléments β eutectoïdes Cr, Fe, Si sont également néfastes. Les éléments β isomorphes Mo, V, Nb sont favorables.

    ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Corrosion Vieillissement

(96 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Cas particulier des alliages β
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PETIT (J.A.), DABOSI (F.) -   Résistance à la corrosion d'ensembles soudés en alliages de titane – influence de l'état structural.  -  Corrosion Science (1974).

  • (2) - BEEN (J.), GRAUMAN (J.S.) -   Titanium and titanium alloys.  -  Chapitre du livre Uhlig's corrosion Handbook, John Wiley & Sons, Inc. (2000).

  • (3) - Publication TIMET -   Corrosion resistance of Titanium  -  . Titanium Metals Corporation (1997).

  • (4) - DEL CURTO (B.) -   Trattamenti di ossidazione anodica del titanio.  -  Nanotecnologie e materiali funzionali, Epitesto (2008).

  • (5) -   Properties and processing of TIMETAL ®6-4.  -  Documentation TIMET (1998).

  • (6) - PETIT (J.A.), CHATAIGNER (G.), DABOSI (F.) -   Inhibitors for the corrosion of reactive metals : titanium and zirconium and their alloys in acid media.  -  Corrosion...

1 Événements

Conférence internationale sur le titane

A lieu tous les 4 ans (World Conference on Titanium)

HAUT DE PAGE

2 Normes et standards (Liste non exhaustive)

ASTM B265-11 - Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate - -

ASTM B348-11 - Standard Specification for Titanium and Titanium Alloy Bars and Billets - -

ASTM B338-10 e1 - Standard Specification for Seamless and Welded Titanium and Titanium Alloy Tubes for Condensers and Heat Exchangers - -

ASTM B861-10 - Standard Specification for Titanium and Titanium Alloy Seamless Pipe - -

ASTM B862-09 - Standard Specification for Titanium and Titanium Alloy Welded Pipe - -

CODAP - 2005 - Section M14 (Code de construction des appareils à pression non soumis à l'action de la flamme) - -

ISO 5832-2 - 1999 - Implants chirurgicaux – Produits à base de métaux – Partie 2 : titane non allié - -

ISO 5832-3 - 1996 - Implants chirurgicaux – Produits à base de métaux – Partie 3 : alliage à forger...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Corrosion Vieillissement

(96 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS