Présentation

Article interactif

1 - PRINCIPALES CARACTÉRISTIQUES

2 - ALLIAGES INDUSTRIELS

3 - AUTRES ALLIAGES

4 - APPLICATIONS

5 - MISE EN ŒUVRE ET PROCÉDÉS

6 - MARCHÉ DES AMF

7 - CONCLUSION

8 - GLOSSAIRE

9 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : M530 v3

Applications
Alliages à mémoire de forme - Technologie et applications industrielles

Auteur(s) : Alain HAUTCOEUR, Étienne PATOOR, André EBERHARDT

Date de publication : 10 sept. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article décrit les mécanismes microstructuraux à l’origine des propriétés observés dans les alliages à mémoire de forme (AMF) et les limitations associées aux phénomènes de fatigue et de vieillissement propres à ces matériaux. Il présente les AMF utilisés dans l’industrie et ceux en cours de développement. Une partie importante est consacrée à la description des différents types d’applications rencontrées et à la présentation des procédés d’élaboration et de transformation utilisés pour réaliser des composants à mémoire de forme. L’article se conclut par une analyse des principales tendances observées dans la commercialisation des dispositifs à base d’AMF.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Alain HAUTCOEUR : NIMESIS Technology, Mecleuves (57245), France

  • Étienne PATOOR : Ancien Professeur à Georgia-Tech Europe (57070) et aux Arts et Métiers, France

  • André EBERHARDT : NIMESIS Technology, Mecleuves (57245) - Ancien Professeur à l’École Nationale d’Ingénieurs de Metz, France

INTRODUCTION

Les alliages à mémoire de forme (AMF) sont des alliages métalliques présentant une transformation martensitique sous l’effet d’un chargement thermomécanique. Ces alliages peuvent retrouver leur forme initiale au chauffage. Ils se distinguent en cela des alliages métalliques usuels. Des effets comme la superélasticité, le retour contraint, la production de travail mécanique, et une forte capacité d’amortissement constituent les propriétés remarquables des AMF.

Observé pour la première fois en 1932 sur un alliage Au-Cd, l’effet mémoire de forme a commencé à susciter un intérêt industriel au début des années 1970, avec le développement du nickel-titane (Nitinol). Il existe de très nombreux alliages à mémoire de forme, mais seules trois familles connaissent un développement commercial : les alliages à base de Ni-Ti, les bases cuivre, et les bases fer. Ils sont commercialisés sous la forme de fils, de barres, de plaques, de tubes et de rubans, de différentes sections et diamètres. Ils sont aussi disponibles en produits poreux et en films minces.

Leurs performances étant étroitement associées à leur état microstructural, une connaissance de base des conditions d’élaboration, et de transformation, des produits utilisés est souhaitable. Pour une bonne utilisation, une définition précise du cahier des charges de l’application envisagée est absolument indispensable (nombre de cycles, niveau de contrainte ou de déformation imposée, température, etc.). Leurs principales applications se situent dans le biomédical, l’aéronautique et le spatial.

Cet article commence par décrire les mécanismes microstructuraux à l’origine des différentes propriétés observées dans les AMF, ainsi que les limitations entrainées par les phénomènes de fatigue et de vieillissement (§ 1). Il indique les principales caractéristiques des alliages utilisés dans les applications industrielles (§ 2), et passe en revue les matériaux en cours de développement, comme les AMF à hautes températures, et les AMF magnétiques (§ 3). Il décrit ensuite les domaines d’application de ces matériaux, en les classant par fonction et par domaine d’application (§ 4). Les étapes clés de la rédaction d’un cahier des charges en vue d’une application sont détaillées au § 4.5. Les propriétés des AMF dépendant fortement des conditions d’élaboration et de mise en forme, la description de ces procédés et de leur influence sur les propriétés fait l’objet du § 5. L’article se termine par une présentation de l’état du marché des AMF (§ 6).

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-m530


Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Applications

4.1 Types d’applications classés par fonction

Les applications des AMF sont généralement divisées en quatre catégories dépendant de la fonction demandée au composant AMF .

HAUT DE PAGE

4.1.1 Retour libre

Le composant à mémoire de forme a pour seule fonction de provoquer des mouvements générés par l’alliage.

Principe de fonctionnement (figure 19a) : le composant à mémoire de forme est déformé, puis libéré (aucune charge appliquée). Il reste déformé jusqu’à ce qu’il soit chauffé au-dessus de la température de transition, et qu’il retrouve sa forme d’origine. Un refroidissement ultérieur au-dessous de la température de transition ne provoque aucun changement de forme macroscopique.

HAUT DE PAGE

4.1.2 Retour contraint

Le composant à mémoire de forme ne peut changer de forme, et génère ainsi une contrainte, ou une force, sur les autres composants.

Principe de fonctionnement (figure 19b) : les composants à mémoire de forme ne peuvent pas reprendre leur forme initiale après avoir été déformés, et une force importante est générée par un chauffage au-dessus de la température de transition.

HAUT DE PAGE

4.1.3 Actionneur ou production de travail

Le déplacement s’accompagne d’une contrainte...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LEXCELLENT (C.) -   Les alliages à mémoire de forme.  -  Hermes Science Publications (2013).

  • (2) - LAGOUDAS (D.C.) -   Shape Memory Alloys: Modeling and Engineering Applications.  -  Springer-Verlag (2008).

  • (3) - PATOOR (E.), BERVEILLER (M.) -   Technologie des alliages à mémoire de forme, Comportement mécanique et mise en œuvre.  -  Hermes Science Publications (1994).

  • (4) - OTSUKA (K.), WAYMAN (C.M.) -   Shape Memory Materials.  -  Cambridge University Press (1998).

  • (5) - HORNBOGEN (H.) -   Review Thermo-mechanical fatigue of shape memory alloys.  -  Journal of Material Sciences, 39, p. 385-399 (2004).

  • (6) - MIYAZAKI (S.) -   Thermal and Stress Cycling Effects and Fatigue Properties of Ni-Ti Alloys.  -  In DUERIG...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS