Présentation

Article interactif

1 - ORIGINE QUANTIQUE DU MAGNÉTISME

2 - FERROMAGNÉTISME DE NANOSTRUCTURES

3 - APPLICATIONS DES FERROMAGNÉTIQUES

4 - UTILISATION DES FERROMAGNÉTIQUES POUR LA SPINTRONIQUE

5 - CONCLUSION

6 - GLOSSAIRE

7 - SYMBOLES

Article de référence | Réf : E1730 v3

Origine quantique du magnétisme
Ferromagnétisme à l’échelle nanométrique

Auteur(s) : Hélène BEA, Liliana D. BUDA-PREJBEANU

Relu et validé le 23 oct. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les matériaux magnétiques ont par le passé révolutionné le stockage de l’information par l’intermédiaire des disques durs magnétiques. L’intérêt pour les matériaux magnétiques continue de croître, notamment à cause de la miniaturisation des dispositifs et de la quête des composants non volatils, robustes, compacts et économes en énergie. Dans cet article, les concepts de base des matériaux magnétiques sont passés en revue, de l’état massif aux nanostructures. Les propriétés statiques et dynamiques sont dressées, les mécanismes non conventionnels pour manipuler l’aimantation, tels que l’application d’un fort courant, sont explicités et le potentiel applicatif est indiqué.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Ferromagnetism at the nanoscale

Magnetic materials changed data storage forever with the extensive use of magnetic hard disks. Interest in magnetic materials has gobe unabated, both for device downscaling and in the race for non-volatile, robust, compact, low power devices. In this article, the basic concepts of magnetic materials are reviewed, from bulk samples to nanostructures. Static and dynamic properties are addressed. Unconventional mechanisms to control magnetization, such as heavy current flow, are explained, and applicative potential is emphasized.

Auteur(s)

  • Hélène BEA : Enseignante-chercheuse - Université Grenoble Alpes, CEA, CNRS, - Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), INAC-SPINTEC, - Grenoble, France

  • Liliana D. BUDA-PREJBEANU : Enseignante-chercheuse - Université Grenoble Alpes, CEA, CNRS, - Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), INAC-SPINTEC, - Grenoble, France

INTRODUCTION

Les matériaux magnétiques suscitent depuis longtemps un fort intérêt de par leurs multiples applications. À l’origine, les matériaux ferromagnétiques ont été utilisés principalement en électrotechnique en tant que source de champ magnétique ou comme élément de base des machines et dispositifs électriques (transformateurs, moteurs, composants inductifs pour l’électronique). Cependant, la conception de disques durs magnétiques a révolutionné le monde du stockage des données et orienté la recherche vers des systèmes magnétiques de plus en plus petits. Les propriétés des matériaux magnétiques sont intimement liées à leur taille. Les effets dus aux phénomènes d’interface et à l’association de divers matériaux permettent de modifier de manière importante le comportement magnétique de nanostructures.

Cet article insiste sur le rôle du confinement latéral et des interfaces avec d’autres matériaux sur les propriétés des systèmes ferromagnétiques. Il présente également leurs exploitations dans diverses applications allant de la technologie de l’information aux biotechnologies. La nanostructuration a permis également la mise en évidence de l’interaction mutuelle entre l’aimantation et le spin des électrons de conduction. Cette interaction est la base des phénomènes dits spintroniques qui ont rendu possible le contrôle de l’aimantation autrement que par l’intermédiaire d’un champ magnétique. Diverses manières non conventionnelles de manipuler l’aimantation sont présentées en s’appuyant sur l’équation de mouvement de l’aimantation.

Le lecteur trouvera en fin d'article un glossaire et un tableau des symboles utilisés.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

magnetization   |   spin-transfert torque   |   dynamics

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-e1730


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Origine quantique du magnétisme

1.1 Moment magnétique

Le magnétisme des atomes résulte du mouvement des électrons qui induisent un moment magnétique dit orbital, associé à leur révolution autour du noyau, ainsi qu’un moment magnétique dit de spin, associé à leur rotation sur eux-mêmes . Le moment magnétique total est la combinaison vectorielle des moments orbitaux et de spin. L’ordre de grandeur du moment magnétique atomique est le magnéton de Bohr, défini par :

avec :

e
 : 
charge de l’électron (−1,6.10–19 C),
h
 : 
constante de Planck (6,63.10–34J.s),
m
 : 
masse de l’électron (9,11.10–31 kg).

Pour un atome isolé, la combinaison des moments orbitaux et des moments de spin des différents électrons obéit aux règles de Hund : l’état de plus basse énergie correspond à celui ou ceux où le moment de spin est maximal, et parmi ceux-ci, où le moment orbital est maximal.

Le moment magnétique total d’un échantillon s’exprime en A.m2. La densité volumique de moment magnétique, également appelée aimantation, est la grandeur intensive utilisée pour caractériser les propriétés d’un matériau. Elle s’exprime en A.m−1.

Lorsqu’un champ magnétique est appliqué sur la matière, les nuages électroniques sont déformés pour compenser l’effet de ce champ, en suivant la loi de Lenz :

avec...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Origine quantique du magnétisme
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DU TREMOLET DE LACHEISSERIE (E.) -   Magnétisme-Fondements.  -  EDP Sciences (1999).

  • (2) - OHNO (H.) -   Making Semiconductors Ferromagnetic.  -  Science, 281, p 951 (1998).

  • (3) - JUNGWIRTH (T.), SINOVA (J.), MAŠEK (J.), KUČERA (J.), MACDONALD (A.H.) -   Theory of ferromagnetic (III, Mn)V semiconductors.  -  Rev. Mod. Phys. 78, 809 (2006).

  • (4) - GRADMANN (U.) -   Magnetism in ultrathin transition metal films.  -  in K.H.J.Buschow (Ed.), Handbook of magnetic materials, vol 7, Elsevier Science Publishers B.V., North Holland, Ch1, pp 1-96 (1993).

  • (5) - THIAVILLE (A.), ROHART (S.), JUÉ (E.), CROS (V.), FERT (A.) -   Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films Europhys.  -  Lett. 100, 57 002 (2012).

  • (6) - AHARONI (A.) -   Introduction...

1 Événements

Journée de la Matière Condensée, Grenoble, 27-31 Août 2018

( https://jmc2018.sciencesconf.org)

Colloque Louis Néel, 14-17 Mai 2019, Toulouse

( https://www.sciencesconf.org/browse/conference/?confid=5388)

HAUT DE PAGE

2 Brevets

Plus de 4 500 brevets existent sur les MRAMs, en voici quelques exemples :

  • High speed magneto-resistive random access memory, J.C. Wu, H.L. Stadler, R.R. Katti, US5173873 (1992) ;

  • Magnetic memory with a thermally assisted writing procedure, J.P. Nozières, I.L.Prejbeanu, TW200937415 (2009) ;

  • Magnetic memory device, C. Heide, US6639830 (2003) ;

  • Self-referenced Memory device and method for operating the memory device, S. Bandiera, US2016232958 (2016) Magnetic racetrack memory device, J.P. Moriya, S. Parkin, L. Thomas, US7626844, (2011) ;

  • Non-volatile magnetic memory cell and devices, A. Gupta, R.V. Rajiv, US6034887 (2000).

D’autres...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS