Présentation

Article interactif

1 - CONTEXTE

2 - ALLIAGES À HAUTE ENTROPIE

3 - MÉTHODES D’ÉLABORATION

  • 3.1 - Préparation métallurgique par fusion
  • 3.2 - Élaboration par procédés mécaniques

4 - CARACTÉRISATIONS PHYSICOCHIMIQUES

5 - CARACTÉRISATIONS DES PROPRIÉTÉS D’ABSORPTION D’HYDROGÈNE

  • 5.1 - Capacité de stockage
  • 5.2 - Propriétés thermodynamiques
  • 5.3 - Propriétés cinétiques
  • 5.4 - Stabilité en cyclage

6 - REVUE SUR LES ALLIAGES À HAUTE ENTROPIE

7 - CONCLUSIONS ET PERSPECTIVES

8 - NOTATION

Article de référence | Réf : IN403 v1

Revue sur les alliages à haute entropie
Nouveaux matériaux pour le stockage de l’hydrogène - Alliages métalliques multi-élémentaires hydrurables

Auteur(s) : Claudia Zlotea

Date de publication : 10 mai 2022

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Parmi les matériaux pouvant former des hydrures métalliques, cet article dresse le bilan d’une nouvelle classe d’alliages désignés comme multi-élémentaires ou à haute entropie. Ces alliages, en rupture avec le paradigme métallurgique conventionnel, sont constitués de plusieurs éléments majoritaires concentrés. Les diverses méthodes de préparation, de caractérisation physicochimique et d’analyse des propriétés d’absorption/désorption de l’hydrogène de ces matériaux sont brièvement décrites. Ces outils assurent au lectorat une compréhension rapide et claire des enjeux liés à la recherche de nouveaux alliages multi-élémentaires pour le stockage de l’hydrogène présentés à la dernière section.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

New materials for hydrogen storage - Multi-principal alloys forming hydrides

Among the materials that can form metal hydrides, this article reviews a new class of alloys named multi-principal element or high entropy alloys. These alloys consist of several concentrated major elements, in contrast with the conventional metallurgical paradigm. The various methods of preparation, physicochemical characterization, and analysis of the hydrogen absorption/desorption properties of these materials will be briefly described. These tools will ensure the readership a rapid and clear understanding of the issues related to the research in the field of multi-principal elemental alloys for hydrogen storage presented in the last section.

Auteur(s)

  • Claudia Zlotea : Chargée de recherche CNRS - Institut de Chimie et des Matériaux Paris-Est, CNRS, Thiais, France

INTRODUCTION

Dans le contexte environnemental et énergétique actuel, l’hydrogène pourrait devenir un vecteur d’énergie propre afin de réaliser la décarbonation de l’économie et d’assurer une croissance écologique de l’industrie. Parmi les défis à relever liés au déploiement de l’hydrogène décarboné (production, distribution et transport, usage), le stockage compact, sûr et efficace reste une technique à développer pour des applications pratiques. Afin de répondre simultanément à ces critères clés, la méthode de stockage sous forme « solide » dans des hydrures métalliques est très prometteuse. Parmi les plusieurs types de matériaux hydrurables actuellement à l’étude, cet article présente les résultats d’une nouvelle classe, les alliages multi-élémentaires, aussi appelés à haute entropie, qui ont récemment affiché des performances très intéressantes. L’étude de l’absorption et de la désorption réversible de l’hydrogène dans ces nouveaux alliages est assez récente, une dizaine d’années, avec un tournant en 2016 qui marque la découverte de l’alliage TiVZrNbHf pouvant stocker 2,5 H/M (atome d’hydrogène par atome de métal). Cette valeur dépasse le 2,0 H/M dans les hydrures métalliques élémentaires ou d’autres alliages conventionnels. Après une introduction générale du domaine, une description des différentes méthodes de synthèse et de caractérisation de ces alliages est présentée, suivie d’une revue des performances des meilleures compositions. Plusieurs aspects sont abordés : la capacité maximale et réversible, les propriétés thermodynamiques et cinétiques, la stabilité en cyclage. Les possibilités de composition dans les diagrammes de phase multidimensionnels sont cependant extrêmement vastes et la recherche expérimentale incrémentale limitée. Dans le futur, un effort de recherche s’avère nécessaire pour prédire les meilleures compositions et pour rationaliser les tendances observées expérimentalement en s’appuyant sur des approches théoriques.

Le lecteur trouvera en fin d’article un glossaire des notations utilisées.

Points clés

Domaine : Matériaux solides pour le stockage de l’hydrogène

Degré de diffusion de la technologie : Émergence

Technologies impliquées : Élaboration de matériaux métalliques, caractérisations physicochimiques, mesures d’absorption/désorption d’hydrogène

Principaux acteurs français :

Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS-UPEC 2-8 rue Henri Dunant, Thiais

Institut Néel, CNRS-UGA, 25 rue des Martyres, Grenoble

Autres acteurs dans le monde :

Université d’Uppsala, Département de Chimie, Laboratoire Ångström, Box 538 751 21 Uppsala, Suède

Université Fédérale de São Carlos, Département d’Ingénierie des Matériaux, Rodovia Washington Luis, km 235 – São Carlos, Brésil

Université du Québec à Trois rivières, Département de Chimie, Biochimie et Physique, 3351, boulevard des Forges, Trois-Rivières, Québec, Canada

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

hydrogen storage   |   metal hybride   |   high entropy alloys

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in403

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Procédés chimie - bio - agro Chimie verte Énergie durable et biocarburants Nouveaux matériaux pour le stockage de l’hydrogène - Alliages métalliques multi-élémentaires hydrurables Revue sur les alliages à haute entropie

Accueil Ressources documentaires Énergies Hydrogène Stockage et transport de l'hydrogène Nouveaux matériaux pour le stockage de l’hydrogène - Alliages métalliques multi-élémentaires hydrurables Revue sur les alliages à haute entropie

Accueil Ressources documentaires Innovation Innovations technologiques Innovations en matériaux avancés Nouveaux matériaux pour le stockage de l’hydrogène - Alliages métalliques multi-élémentaires hydrurables Revue sur les alliages à haute entropie


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

6. Revue sur les alliages à haute entropie

Ce chapitre présente les performances de stockage d’hydrogène dans certains alliages à haute entropie rapportés dans la littérature. Il ne s’agit pas d’une revue exhaustive mais d’une sélection des compositions les plus intéressantes. Deux classes principales de matériaux seront abordées selon leur structure cristalline : les alliages adoptant une structure CC et les intermétalliques, plus précisément, les compositions AB2 aussi connues sous le nom de phases de Laves. Il faut pourtant préciser que les alliages CC sont les plus étudiés en raison de leurs propriétés prometteuses, pour cette raison, ils seront plus amplement détaillés par la suite.

6.1 Solutions solides cubiques centrées

Les métaux purs et les alliages conventionnels adoptant une structure CC sont étudiés depuis longtemps pour le stockage de l’hydrogène grâce à leurs importantes capacités pouvant aller jusqu’à 2,0 H/M (phase appelée di-hydrure). L’exemple emblématique est le V qui peut absorber l’hydrogène jusqu’à 3,8 % massique pour former l’hydrure VH2. Les alliages CC à base de Ti et V pouvant aussi contenir d’autres métaux de transition ont été également très étudiés, leurs capacités maximales sont autour de 3 à 3,5 % en masse . Néanmoins, leur grand désavantage réside dans le fait que ces matériaux présentent deux plateaux de pression correspondant à deux réactions successives avec l’hydrogène : la première a lieu à basse pression pour former un hydrure intermédiaire avec une capacité autour de 1,0 H/M (phase appelée mono-hydrure) et la seconde a lieu à plus haute pression et transforme l’hydrure intermédiaire en un hydrure d’une capacité maximale autour de 2,0 H/M (di-hydrure). Dans la pratique, cela implique une utilisation du deuxième plateau uniquement

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Revue sur les alliages à haute entropie
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ZÜTTEL (A.), REMHOF (A.), BORGSCHULTE (A.), FRIEDRICHS (O.) -   Philos. Trans. R. Soc. Math. Phys. Eng. Sci.  -  368 3329–3342 (2010).

  • (2) - EBERLE (U.), FELDERHOFF (M.), SCHUTH (F.) -   Angew. Chem.-Int. Ed.  -  48 6608–6630 (2009).

  • (3) - ZÜTTEL (A.) -   Naturwissenschaften  -  91 157–172 (2004).

  • (4) - KLEBANOFF (L.) ed -   Hydrogen Storage Technology Materials and Applications,  -  CRC Press (2016).

  • (5) - HIRSCHER (M.) et al -   J. Alloys Compd.  -  827 153548 (2020).

  • (6) - YEH (J.) et al -   Adv. Eng. Mater.  -  6 299–303 (2004).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Cet article offert jusqu'au 31/12/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS