Présentation
RÉSUMÉ
Les matériaux carbonés sont historiquement associés au développement de l’énergie nucléaire, depuis la « Chicago Pile-1 » d’Enrico Fermi, aux réacteurs de 1ère et 2nde génération, et enfin pour les réacteurs de 4e génération. Si, au vu de ses propriétés thermiques et mécaniques, le graphite a été utilisé comme matériau de structure et modérateur neutronique dès 1942, les matériaux C/C ont été identifiés plus récemment comme candidats pour différents composants des réacteurs de 4e génération (barres de contrôle, conduits chauds, échangeurs de chaleurs…). Ils possèdent en effet des propriétés mécaniques et thermiques exceptionnelles. La diminution de leurs évolutions dimensionnelles, sous irradiation, reste le point clé pour le développement des barres de contrôle, principale application étudiée.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Carbonaceous materials have always been associated with the development of nuclear energy, from Enrico Fermi’s “Chicago Pile-1”, to 1st and 2nd generation reactors, and finally for 4th generation reactors. If, due to its thermal and mechanical properties, graphite was used as structural material and neutron moderator as early as 1942, Carbon/Carbon materials have been identified as candidates for many components of Generation IV reactors (control rods, hot duct assembly, heat exchangers…). They possess exceptional characteristics, both in terms of mechanical and thermal properties. The minimization of dimensional changes under high neutron fluence remains the main key point for the development of control rods, which is the principle application studied.
Auteur(s)
-
Patrick DAVID : Ingénieur, expert senior - Commissariat à l’énergie atomique et aux énergies alternatives, DAM, Le Ripault, Monts, France
-
Lionel GOSMAIN : Docteur en Sciences, Chef de service - Université Paris-Saclay, CEA, Service d’Études Analytiques et de Réactivités des Surfaces, Gif-sur-Yvette, France
INTRODUCTION
Les matériaux à base de carbone sont intimement liés au développement des technologies nucléaires. Enrico Fermi les utilisa, en effet, comme modérateurs de neutrons lors de la première réaction de fission qu’il réalisa en 1942 à l’université de Chicago. Depuis lors, plus de 250 000 tonnes de graphite (dont 23 000 tonnes en France) ont été employées pour contrôler la fission dans 125 réacteurs nucléaires dans le monde. Le graphite possède de nombreuses qualités qui font de lui un excellent candidat pour des applications nucléaires : c’est un bon modérateur neutronique ; il possède des propriétés mécaniques intéressantes à haute température ; et, à condition d’être suffisamment pur, il s’active relativement peu sous irradiation. Il présente de plus une très bonne usinabilité et un coût de production relativement modéré.
L’invention des composites C/C, matériaux aux performances améliorées grâce à des fibres de carbone renforçant la matrice en carbone, a aussi ouvert de nouveaux champs d’application pour le domaine nucléaire. Ces matériaux ont été développés dans les années 1970 pour les tuyères des moteurs de fusées et les protections thermiques de rentrée atmosphérique des missiles, puis, dans les années 1980, pour les freins d’avions et des pièces pour les fours haute température. Les études et le développement pour le nucléaire ont également débuté dans les années 1980, pour les réacteurs haute température (HTR), et, à partir des années 1990, pour la fusion. Ils ont aussi été identifiés, depuis le début des années 2000, de même que les composites SiC/SiC, comme candidats pour les réacteurs de 4e génération (GEN-IV), mais leur optimisation pour résister aux conditions extrêmes de température, d’irradiation et de sollicitations mécaniques représente un véritable défi scientifique et technologique.
Cet article présente les applications potentielles des graphites et C/C pour les réacteurs de 4e génération, leurs procédés de fabrication spécifiques, leurs caractéristiques et propriétés, ainsi que leurs comportements, souvent complexes, sous irradiation.
KEYWORDS
neutron moderator | carbonaceous materials | control rods | structural material
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Génie nucléaire > Matériaux pour le nucléaire > Graphites et composites C/C pour réacteurs nucléaires de 4e génération > Conclusion
Accueil > Ressources documentaires > Matériaux > Plastiques et composites > Applications des composites > Graphites et composites C/C pour réacteurs nucléaires de 4e génération > Conclusion
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Conclusion
Le graphite a été utilisé dès le début du développement de la filière nucléaire, que ce soit dans des réacteurs de recherche ou des applications électrogènes (réacteurs de 1re et 2nde génération), car il constitue un bon modérateur neutronique, possède des propriétés mécaniques et thermiques intéressantes même pour des températures élevées et résiste bien à l’endommagement neutronique (irradiation). Parmi les six concepts de réacteurs de la filière 4e génération, deux mettent en œuvre du graphite à des fins de modération neutronique et de structure de cœur : le VHTR (Very High Temperature Reactor) et le MSR (Molten Salt Reactor).
Malgré sa bonne résistance à l’irradiation, le graphite voit néanmoins ses propriétés évoluer avec l’endommagement neutronique : augmentation, puis chute des propriétés mécaniques (module et résistances), diminution de la conductivité thermique et évolutions dimensionnelles des blocs de graphites qui de manière générale commencent à se contracter dans une ou plusieurs direction(s) avant de présenter une dilatation volumique pour les forts endommagements (ΔV/V > 1). Ce dernier point est le facteur limitant de la durée de présence des blocs de graphite dans le cœur du réacteur. Le choix des graphites pour les réacteurs de 4e génération s’oriente donc préférentiellement vers des nuances qui présentent de faibles variations dimensionnelles comme les graphites isotropes à grains fins. Ces nuances présentant cependant un coût de fabrication élevé, des alternatives intéressantes résident dans des graphites dont le procédé de mise en forme est intermédiaire entre la technique de filage (ou compression uniaxiale) et la compression isostatique. Les procédés de vibro-compactage ou vibro-tassage permettent par exemple de réaliser des blocs de graphite de grande dimension avec des coefficients d’anisotropie très proches de ceux des graphites isotropes à grains fins (cas du NBG-18).
Une attention particulière doit également être portée au nécessaire haut niveau de pureté du graphite afin de limiter le plus possible :
-
l’absorption neutronique (en éliminant notamment les traces de bore) ;
-
l’oxydation du graphite due à la présence d’éléments...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - WINDES (W.E.), LESSING (P.A.), KATOH (Y.), SNEAD (L.L.), LARA-CURZIO (E.), KLETT (J.), HENAGER (C.), SHINAVSKI (R.J.) - Structural ceramic composites for nuclear applications. - Idaho National Laboratory, INL/EXT-05-006522005 (2005).
-
(2) - CARRÉ (F.), RENAULT (C.), ANZIEU (P.), BROSSARD (P.), YVON (P.) - Outlook on Generation IV Nuclear Systems and related materials and challenge. - Materials issues for Generation IV Systems. Springer (2007).
-
(3) - HAYNER (G.O.), BURCHELL (T.D.), SNEAD (L.L.), KATOH (Y.) - Next Generation Nuclear Plant Materials Research and Development Program Plan. - INL/EXT-05-00758 (2006).
-
(4) - AREVA - NGNP Composites R&D Technical issues study. - TDR-3000807 (2008).
-
(5) - DAVID (P.) - Carbon/carbon materials for generation IV nuclear reactors. - Structural materials for generation IV nuclear reactors. Woodhead publishing series in energy number 106. Elsevier (2017).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
CEA/Réacteurs de 4e génération :
Société francophone d’étude des carbones (SFEC) :
http://sfec-asso.prod.lamp.cnrs.fr/
Groupe de recherches sur les composites à matrices céramiques :
HAUT DE PAGEConstructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Matériaux graphites et composites C/C
MERSEN
https://www.mersen.com/fr/produits/specialites-graphite
Matériaux composites C/C
Safran Ceramics – Headquarter Rue de Touban BP 90053 33185 Le Haillan, France.
Graphites
Carbone Savoie
https://www.carbone-savoie.fr/
Organismes – Fédérations – Associations (liste non exhaustive)Minos Centre d’excellence pour les matériaux du nucléaire
http://www.materials.cea.fr/fr/minos/
GENIV
Documentation - Formation – Séminaires (liste non exhaustive)Institut...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive