Présentation
EnglishRÉSUMÉ
Cet article traite de la méthode de collage direct encore nommée adhésion moléculaire en dévoilant les phénomènes et les mécanismes qui permettent d’adhérer sans colle. Il s’intéresse aux cas de la silice et du silicium, car ce sont les matériaux les plus étudiés et physiquement les mieux compris à ce jour. Les points fondamentaux qui autorisent l’adhésion spontanée en termes de qualité (rugosités, planéités), de recouvrement et de propreté des surfaces sont détaillés dans une première partie. Puis les méthodes de caractérisation des forces d’adhésion lors du collage, et de l’adhérence, lors du désassemblage sont explorées. Enfin, les mécanismes physico-chimiques de l’adhérence et les traitements permettant de renforcer la tenue des assemblages sont décrites.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Aurélien MAUREL-PANTEL : Senior Lecturer - Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
-
Frank FOURNEL : Research Director - CEA LETI, CEA, Grenoble, France
-
Thierry BILLETON : Engineer - Laser Physics Laboratory (LPL UMR7538), CNRS, Villetaneuse, France
-
Jérôme DEBRAY : Engineer - Néel Institute (UPR2940), Grenoble Alpes University, CNRS, Grenoble INP, Grenoble, France
-
Christophe HECQUET : Engineer - Charles Fabry Laboratory (LCF UMR8501), CNRS, Palaiseau, France
-
Anne TALNEAU : Research Director - Center for Nanosciences and Nanotechnologies (C2N UMR9001), CNRS, Palaiseau, France
-
Frédéric LEBON : Professor - Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
INTRODUCTION
Direct bonding technology, also known as molecular adhesion, is a very special type of assembly. Its most concise definition seems to be: "spontaneous bonding without the addition of thick liquid". The fact that no liquid is added implies, above all, that no polymeric liquid glue is used. It's a glueless assembly! The fact that it is "spontaneous" implies that the joining of the two surfaces saves energy, in order to propagate the direct bond.
The energy available to the system for bonding is called "adhesion energy". This is to be contrasted with adhesion energy (otherwise known as "bonding energy"), which represents the energy required to separate the assembled surfaces. Adhesion energy, on the other hand, is the energy that helps bring them together.
In direct bonding, to enable spontaneous bonding, the adhesion energy must be greater than the energy cost of bringing the surfaces together, i.e. greater than the elastic energy of deformation induced by the fact that the surfaces to be bonded will touch and come as close as possible, deforming as necessary. It is therefore necessary to have surfaces very close together, generally at a distance of the order of nanometers. At this scale, intermolecular forces between the two surfaces can come into play. This is why the technique is also known as "molecular adhesion". Direct bonding can be achieved by van der Waals forces, hydrogen bonds and, in some cases, capillary forces: these forces are the driving force behind direct bonding. The mechanical energy of deformation, expended in bringing the surfaces together, acts as a brake.
For simplicity's sake, the article focuses on direct bonding of fused silica. This motor and brake are described in detail, enabling us to present the mechanisms of adhesion, and the criteria to be met in terms of surface specifications, or environment, to achieve adhesion. Adhesion energy determines the mechanical strength of the interface. In the final section, we describe the techniques used to maximize adhesion energy.
MOTS-CLÉS
adhésion Adhérence Silice Silicium assemblage collage direct
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Métier : responsable bureau d’étude/conception > Matériaux à propriétés mécaniques > Direct bonding - Adhesive-free assembly for extreme environments > Conclusion
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Conclusion
This article shows the importance of adhesion energy in the direct bonding process between two silica or silicon surfaces. For these two surfaces to bond spontaneously, attractive forces must exist between them. These forces can be van der Waals, hydrogen bonding or covalent, but at low density. In all cases, however, these adhesion forces remain weak, and direct bonding requires very smooth surfaces on an atomic scale.
Surface roughness therefore plays a decisive role in molecular bonding: it determines the density of short-range interactions between surface asperities. The preparation of bonding surfaces involves careful polishing and cleaning, to eliminate contamination and achieve hydrophilic surfaces. The various surface polishing steps, including roughing, smoothing and polishing, are all designed in turn to reduce roughness and ensure the flatness required for efficient direct bonding. Controlling this flatness is essential to ensure optimum adhesion. There are several experimental methods for measuring flatness, the most common of which is interferometry.
Adhesion energy is the energy that helps bring the surfaces to be bonded closer together. Adhesion energy is generally measured by the speed of the bonding wave. This measurement is an indicator of adhesion quality. Adhesion energy (also known as bonding energy) is the energy required to separate bonded surfaces. Adhesion energy plays an essential role in the bonding process: it determines the mechanical strength of bonded assemblies. And for optimum direct bonding, it's vital to increase this bonding energy.
Several methods for enhancing adhesion energy are discussed, including thermal annealing, plasma treatments and the use of chemical activating agents such as amino-alcohol. Thermal annealing increases adhesion by promoting the creation of covalent bonds between surfaces. Plasma treatments, with O2 and N2 plasmas, as well as amino-alcohol, modify the surface to maximize the density of covalent bonds and optimize adhesion. It is also important to note that adhesion energy can vary over time depending on storage conditions, particularly in the presence of moisture, which can lead to a reduction in bonding energy if the interface is not properly closed. However, proper surface preparation and annealing can prevent this adhesion degradation.
Having reviewed the mechanisms involved and the methods for implementing adhesion and for strengthening the bond of direct bonding, the following article [N 2 001] describes the methods available for characterizing the mechanical properties of direct bonded assemblies: starting with fracture propagation methods for measuring bond energy, and continuing with methods...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - WALLIS (G.), POMERANTZ (D.I.) - Field Assisted Glass-Metal Sealing. - In Journal of Applied Physics, 40(10), p. 3946‑3949 (1969). – 10.1063/1.1657121
-
(2) - NESE (M.), HANNEBORG (A.) - Anodic bonding of silicon to silicon wafers coated with aluminium, silicon oxide, polysilicon or silicon nitride. - In Sensors and Actuators A: Physical, 37, p. 61‑67 (1993). – 10.1016/0924-4247(93)80013-7
-
(3) - RIEUTORD (F.), MORICEAU (H.), BENEYTON (R.), CAPELLO (L.), MORALES (C.), -CHARVET (A.-M.) - Rough Surface Adhesion Mechanisms for Wafer Bonding. - In ECS Transactions, 3(6), p. 205‑215 (2006). – 10.1149/1.2357071
-
(4) - BEURTHE (C.) - La fabrication des composants en verre optique. - In Photoniques, 69, p. 40‑43 (2014). – 10.1051/photon/20146940
-
(5) - WOLF (S.), TAUBER (R.N.) - Silicon processing for the VLSI era. Vol. 4: Deep-Submicron process technology. - Lattice Pr (2002).
-
...
ANNEXES
Construction of a Fabry Perot interferometer (etalon) GB312534A
Improvements in or relating to lasers GB1017248A
HAUT DE PAGE2.1 Manufacturers – Suppliers – Distributors (non-exhaustive list)
P0.DE.O Polishing and Design for Optics, 13510 Eguilles, France http://www.podeo-optiques.fr/
BERTIN WINLIGHT, 84120 Pertuis, France https://www.bertin-winlight.fr/
FICHOU HEF Photonics, 94260 Fresnes, France https://optique-fichou.com/
CEA-Leti, 38054 Grenoble, France https://www.leti-cea.fr/cea-tech/letithal
SESO large precision optics and systems by Thales, 13290 Aix en Provence, France http://www.seso.com/
SOITEC, 38190 Bernin, France https://www.soitec.com/fr/
ST-Microelectonics https://www.st.com/content/st_com/en.html
X-Fab,...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive