Présentation
EnglishRÉSUMÉ
Les matériaux ferroélectriques trouvent de nombreuses applications sous forme de condensateurs en électronique, de générateurs et de capteurs piézoélectriques, de cristaux pour l’optique non linéaire. Ces applications résultent de leurs propriétés très spécifiques rappelées en début d'article. Les problématiques actuelles autour de leur synthèse et de leur mise en forme résultent principalement de l’intégration attendue et toujours plus poussée. Cette dernière implique la réduction de la taille des matériaux et donc des conséquences très importantes sur les fonctionnalités des ferroélectriques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Mario MAGLIONE : Directeur de Recherche - ICMCB, CNRS Université Bordeaux, Pessac, France
-
Catherine ELISSALDE : Directeur de Recherche - ICMCB, CNRS Université Bordeaux, Pessac, France - Cet article est la version actualisée de l’article [E 1 870] intitulé « Ferroélectricité », rédigé par Geneviève Godefroy et paru en 1996.
INTRODUCTION
Anticipée pendant des décennies à la fin du XIXe siècle, la ferroélectricité a été formellement découverte en 1920. Par analogie avec les ferromagnétiques et bien qu’ils contiennent rarement du fer, les composés possédant une polarisation spontanée renversable par un champ électrique ont été qualifiés de ferroélectriques. La permittivité diélectrique des ferroélectriques est de l’ordre de plusieurs milliers, c’est-à-dire au moins cent fois supérieure à tous les autres isolants (polymères, oxydes, nitrures…). Ces composés sont donc utilisés pour la réalisation de condensateurs à haute densité, une application pour laquelle ils sont incontournables. Cependant, cette très haute permittivité ne signifie pas que les ferroélectriques sont parfaits sous tout rapport. En effet, leur très haute polarisabilité s’accompagne de pertes diélectriques pouvant atteindre des valeurs de plusieurs pour cent, incompatibles avec certaines applications en particulier aux hautes fréquences. Le premier challenge est de contrecarrer ces pertes, soit par une approche physicochimique, soit en développant des stratégies de science des matériaux (céramiques, composites, interfaces…).
Toutes les autres fonctionnalités des ferroélectriques résultent du fait que leur polarisation dépend très fortement des contraintes extérieures. Suivant la nature de ces contraintes, des effets exceptionnels sont obtenus et différentes applications sont possibles :
-
pyroélectriques sous changement de température ; ce qui permet la réalisation de capteurs thermiques en particulier détecteurs infra-rouges ;
-
piézoélectriques sous contrainte mécanique ; ce couplage est largement utilisé dans les capteurs ultrasonores (imagerie médicale), dans les communications sous-marines (sonar), dans les actuateurs (dispositifs de déplacements régulés) et dans la récupération d’énergie (transformation de vibrations en énergie électrique) ;
-
adaptatifs sous champ électrique ; cet effet trouve des applications dans de multiples gammes de fréquences notamment aux fréquences gigahertz pour des dispositifs de télécommunications accordables (déphaseurs, résonateurs, antennes), en optique pour des modulateurs électro-optiques ou des générateurs d’harmonique dans les lasers. Dans ce dernier cas, c’est le champ électrique de l’onde lumineuse qui induit le stress nécessaire au changement de l’indice optique.
Pour toutes les applications dites non linéaires (la réponse dépend de la contrainte), l’ampleur de la contrainte appliquée impose un contrôle accru des défauts présents dans le matériau. Étant donné que l’immense majorité des ferroélectriques utilisés dans les applications sont des oxydes ternaires (par exemple ABO3), il s’agit là d’une problématique permanente pour les chercheurs et les ingénieurs du domaine. Les ferroélectriques n’ont pas encore atteint le degré de pureté et de fiabilité des semi-conducteurs et des métaux, matériaux avec lesquels ils coexistent dans tous les dispositifs où ils sont mis en œuvre. Irremplaçables dans de nombreuses applications, les ferroélectriques nécessitent des travaux de recherche poussés afin de répondre à de nombreux enjeux dans des domaines stratégiques comme l'électronique, l'énergie, l'optique et la santé.
Après avoir rappelé les propriétés spécifiques des matériaux ferroélectriques et leurs mises en œuvre, cet article se concentre sur les pistes de recherche actuelles. Il aborde les trois types principaux de mise en forme des matériaux : céramiques polycristallines, couches minces et monocristaux.
Le lecteur trouvera en fin d'article un glossaire et un tableau des symboles utilisés.
MOTS-CLÉS
VERSIONS
- Version archivée 1 de juin 1985 par François MICHERON
- Version archivée 2 de sept. 1996 par Geneviève GODEFROY
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Électronique > Matériaux pour l'électronique et dispositifs associés > Matériaux ferroélectriques - Propriétés, mise en œuvre et perspectives > Développements depuis 2005
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Développements depuis 2005
3.1 Nouvelles voies de synthèse
Les exigences imposées par la miniaturisation des dispositifs en termes de tailles des grains des poudres ont nécessité une optimisation des procédés de synthèse et la mise en place de nouvelles techniques d’élaboration. Comme souligné précédemment (§ 2.4), les valeurs de permittivité des céramiques de BaTiO3 fluctuent en fonction de la voie de synthèse, de la technique de frittage et des méthodes de caractérisations utilisées. Les développements décrits dans cette partie concernent pour l’essentiel le domaine de la recherche.
Les procédés d’élaboration de nanoparticules doivent répondre à des critères très stricts en termes de contrôle de la taille, et de la distribution en taille des grains et de leur morphologie. Le cahier des charges inclut également un contrôle de la cristallinité et de la composition chimique des poudres. Dans le cas plus particulier des nanoparticules d’oxydes ferroélectriques, la stœchiométrie du matériau doit être maîtrisée, en particulier le rapport cationique A/B de la structure pérovskite ABO3, les lacunes cationiques ou d’oxygène et la présence d’ions hydroxydes OH−. L’état d’agglomération des poudres nanométriques est également un paramètre critique. Ce paramètre doit être optimisé afin de garantir une densification optimale avec une microstructure homogène et exempte de grossissement granulaire en fin de frittage. Le choix de la méthode de synthèse doit, en outre, tenir compte des contraintes environnementales et du coût.
La plupart des poudres ferroélectriques nanométriques sont obtenues par des synthèses par voie humide (sol gel, co-précipitation, voie hydrothermale, oxalate, en milieux fluides supercritiques…) (tableau 2). En effet, les synthèses par réaction...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Développements depuis 2005
BIBLIOGRAPHIE
-
(1) - COEHLO (R.) - Physics of Dielectrics for the Engineer. - Elsevier (1978).
-
(2) - SZE (S.) - Physics of semi-conductor devices. - s.l. : Wiley international (1969).
-
(3) - GLASS (A.M.), LINES (M.E.) - Principles and Applications of Ferroelectrics and Related Materials. - Oxford : Clarendon (1974).
-
(4) - VALASEK (J.) - * - . – Phys Rev, vol. 17, p. 475 (1921).
-
(5) - MITSUI (T.) - Ferroelectrics and antiferroelectrics in Springer Hanbook of Condensed Matter and Materials Data First Edition. - Berlin Heidelberg : Springer. Pages 903 à 936 (2005).
-
(6) - WHATMORE (R.) - Ferroelectric Materials in Springer Hanbook of Condensed Matter and Materials Data Second Edition. - Heidelberg :...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Fabricants MLCC
MURATA https://www.murata.com
KEMET https://www.kemet.com
EXXELIA https://www.exxelia.com
SRT-MICROCÉRAMIQUE https://www.srt-microceramique.com
HAUT DE PAGECet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(206 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive