Présentation

Article

1 - PRINCIPES DE BASE DE LA TOMOGRAPHIE

2 - TOMOGRAPHES INDUSTRIELS

3 - APPORT DE LA TOMOGRAPHIE EN PRODUCTION

4 - APPORT DE LA TOMOGRAPHIE EN R&D FONDERIE

5 - FUTUR DE LA TOMOGRAPHIE

6 - CONCLUSION

Article de référence | Réf : M3550 v1

Tomographes industriels
Apports de la tomographie en fonderie

Auteur(s) : Patrick HAIRY

Date de publication : 10 juin 2014

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

 

La tomographie est une technologie de contrôle non destructif qui permet une reconstruction en trois dimensions des pièces. Si son utilisation en fonderie est encore assez peu répandue, elle est en croissance en particulier pour les pièces en aluminium à forte valeur ajoutée dans le secteur automobile (culasse, bloc moteur). Cet article expose le principe de la tomographie, les éléments constitutifs d’un tomographe, les acteurs du marché (fournisseurs, prestataires de service), les matériels commercialisés, et présente les apports de cette technologie récente pour la production des pièces de fonderie (quantification des défauts internes et contrôle tridimensionnel), et dans les services de R&D (analyse de microstructure, reconstruction 3D de défauts interne…).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Patrick HAIRY : Ingénieur ENSAM ParisTech - Professeur à l’ESFF (École Supérieure de Fonderie et de Forge) - Responsable de l’activité R&D produit et process fonderie au CTIF (Centre Technique des Industries de la Fonderie), France

INTRODUCTION

La tomographie industrielle, dérivée des technologies médicales (scanner, IRM), commence à se répandre dans les industries de la fonderie. Cette technologie de contrôle non destructif permet une visualisation en 3D, de l’intérieur comme de l’extérieur, de pièces d’une grande complexité géométrique. Il faut distinguer les micro-tomographes, qui offrent une résolution de l’ordre du micromètre et sant utilisés en R&D sur des échantillons ou des éprouvettes, des tomographes de production qui permettent de scanner des pièces entières (200 x 200 x 500 mm) mais avec un niveau de résolution moindre (100 µm à 200 µm).

En production, la tomographie permet de localiser et de quantifier les défauts internes, mais également de réaliser le contrôle géométrique de pièces prototypes. En particulier, des zones internes noyautées, très complexes géométriquement, peuvent être contrôlées sans avoir à effectuer de coupe.

La tomographie est utilisée essentiellement dans un contexte automobile sur des pièces en aluminium (culasse, bloc moteur, piston). Des applications industrielles existent cependant dans d’autres domaines (aéronautique) ou pour d’autres alliages (base nickel).

Au stade de la R&D, la micro-tomographie permet l’analyse fine des microstructures de matériaux exotiques (composite à matrice métallique, mousse métallique, alliage semi-solide) ou la reconstruction de la géométrie de défauts internes à des fins de calcul de structure pour quantifier l’impact des imperfections de fonderie sur la tenue mécanique.

Il existe un grand nombre de fournisseurs de tomographes industriels (Yxlon, General Electric…), comme de nombreux sous-traitants (Tomo Adour…).

La tomographie en fonderie est en concurrence avec d’autres moyens de contrôle non destructif conventionnels (radiographie et radioscopie) qui sont beaucoup plus largement utilisés. Bien que d’un coût supérieur et n'autorisant pas un contrôle rapide de pièce, la tomographie est le seul outil qui permette de contrôler des zones internes de pièces non accessibles, de quantifier des défauts et de les positionner dans l’espace avec précision.

L’objectif de cet article est de dresser un état de l’art en matière de tomographie industrielle (éléments d’un tomographe, fournisseurs, prestataires de service, matériels disponibles) et de mettre en évidence les apports de cette technologie dans le domaine de la fonderie, aussi bien dans les services de production qu’en R&D.

Historique de la tomographie

Bien que la possibilité théorique de créer des tomographes soit évoquée depuis le début du XXe siècle (théorème de Radon en 1917), ce n'est qu'au début des années 1970 qu'apparaissent les premiers appareils médicaux dotés d'ordinateurs capables de réaliser les calculs nécessaires à la reconstruction 3D.

Sir Godfrey Newbold Hounsfield est reconnu comme le concepteur du scanner médical en juin 1971, scanner qu'il présente au 2e Congrès de l’Association Européenne de Radiologie à Amsterdam.

Hounsfield s’est appuyé sur les travaux publiés quelques années auparavant par un physicien américain, Allan MacLeod Cormack. Les deux savants ont obtenu le Prix Nobel de médecine en 1979 pour le « développement de la tomographie axiale calculée ».

En 1973, le premier prototype de tomographe en état de marche est présenté par l’américain Ledley. La commercialisation démarre dès 1974 à des fins médicales sous le nom de « Acta Scanner ».

Les années 1975-2000 connaissent un extraordinaire développement de l’usage du tomographe dans le domaine médical. Ce n’est cependant que vers la fin des années 1990 qu’apparaissent les premiers tomographes industriels. Ces derniers ont nécessité des adaptations par rapport à leurs homologues médicaux pour tenir compte de la variabilité des matériaux (plastique, métaux, céramique), de la taille des pièces (de l’éprouvette au bloc moteur) ou des contraintes industrielles (coût).

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m3550


Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Tomographes industriels

Nous présentons les différents types de tomographes existants et les éléments constitutifs d’un tomographe avant de répertorier les fournisseurs de matériel, les sous-traitants réalisant des scans de pièces, les fonderies équipées et les différents types de pièces concernées à l’heure actuelle par la tomographie.

2.1 Différents types de tomographe

Les différents types de tomographes peuvent être classés en 4 grandes familles fonction de la résolution atteinte et de l'énergie du rayonnement utilisé :

  • les nano-tomographes : la source, basse énergie, délivre des photons compris entre 40 et 100 kV. Ce domaine correspond généralement aux applications médicales, mais trouve également une application en nano-tomographie (résolution inférieure au micron) ;

  • les micro-tomographes (tomographes à microfoyer) : la source présente un foyer de taille micrométrique (10 à 50 µm) et l'énergie émise est en général faible (40 à 150 kV). Ces tomographes sont généralement réservés à des applications de R&D et équipent les laboratoires universitaires. Ils permettent d’atteindre des résolutions de l’ordre du micron sur des échantillons de l’ordre de quelques millimètres ;

  • les tomographes haute énergie : la source délivre un faisceau de rayons X compris entre 100 et 450 kV. Ce sont les tomographes industriels les plus courants utilisés pour le contrôle de pièces en production. Ils permettent d’obtenir des résolutions de quelques centaines de microns pour des tailles de pièces de plusieurs dizaines de centimètres ;

  • les tomographes très haute énergie : la source de rayons X est un accélérateur linéaire dont l’énergie moyenne se situe souvent au-delà de 1 MV (soit 1 000 kV). Ce type de tomographe permet de traverser des épaisseurs importantes de matière ou des matières à forte densité (alliages ferreux).

En pratique, seuls les micro-tomographes et les tomographes haute énergie trouvent des applications en fonderie.

HAUT DE PAGE

2.2 Éléments constitutifs...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Tomographes industriels
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HAGNER (V.L.), MNICH (F.) -   Schnelle Computertomographie im praktiscschen Einsatz  -  Giesserei 100, p. 44-50 (01/2013).

  • (2) - HAIRY (P.) -   La tomographie industrielle, une technologie en pleine évolution  -  Fonderie Magazine, n° 15, p. 36-39 (Mai 2011).

  • (3) - LEQUEUX (S.), RIPAUC (C.), DRIEU (B.), QUANTIN (S.), IZERABLE (D.) -   Les applications de la tomographie pour la mise au point dimensionnelle et métallurgique des culasses automobiles  -  Séminaire CND du CTIF (9 février 2012).

  • (4) - LERICHE-GUERAULT (M.) -   Un tomographe au centre de recherche de l’usine Montupet de Laigneville  -  La Gazette de Picardie (03/09 Mai 2011).

  • (5) - ANTONA (S.) -   Séminaire CND – 15 Novembre 2012 (CTIF/92310 Sèvres), Témoignage d’un fondeur : Fonderie Matour  -  Séminaire CTIF « Les CND, des techniques d’avenir pour la fonderie ». CTIF Sèvres (9 février 2012).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS