Présentation

Article

1 - DESCRIPTION DE LA TECHNOLOGIE D'IMPRESSION 3D

2 - IMPRESSION 3D DE MATÉRIAUX COMPOSITES À MATRICE POLYMÈRE

3 - APPLICATION DES COMPOSITES POLYMÈRES IMPRIMÉS 3D

4 - FUTURES RECHERCHES

Article de référence | Réf : BM7923 v1

Futures recherches
Impression 3D de matériaux composites à matrice polymère - Revue et prospective

Auteur(s) : Éditions Techniques de l’ingénieur

Date de publication : 10 nov. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

NOTE DE L'ÉDITEUR

Cet article est la traduction française de la publication suivante (avec l'autorisation d'Elsevier B.V.) : 

3D printing of polymer matrix composites: A review and prospective, Xin Wang, Man Jiang, Zuowan Zhou, Jihua Gou, David Hui, Composites Part B: Engineering, Volume 110, 1 February 2017, Pages 442-458

16/11/2020

RÉSUMÉ

Cet article passe en revue les techniques de l'impression 3D lorsqu'elle est mise en œuvre avec des matériaux polymères composites, ainsi que les propriétés et performances des pièces obtenues, et leurs applications potentielles. Il décrit tout d’abord les techniques d'impression 3D courantes : le dépôt de fil fondu, le frittage laser sélectif, l'impression par jet d'encre, la stéréolithographie et le traçage 3D. Les méthodes de fabrication et les performances des matériaux polymères composites renforcés de particules, de fibres et de nanomatériaux sont ensuite explicitées. Enfin, d’importantes limitations de ces procédés sont identifiées pour susciter de futures recherches sur l’impression 3D.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Éditions Techniques de l’ingénieur :

INTRODUCTION

L'impression 3D, également appelée fabrication additive (AM), prototypage rapide (RP) ou fabrication de solides de forme libre, désigne « un procédé selon lequel les matériaux sont assemblés, généralement couche par couche, pour fabriquer un objet conforme aux données 3D qui le modélisent ». Il a été décrit pour la première fois en 1986 par Charles Hull. Cette technologie consiste à créer des objets en déposant le(s) matériau(x) à l'intérieur des contours définis par le modèle 3D. Cela permet de réduire les déchets puisque la précision géométrique obtenue est suffisante, évitant que la pièce ne soit reprise en finition pour éliminer surépaisseurs et autres bavures. Le processus débute par un maillage informatique 3D qui peut être créé à partir de données d’analyse d’images ou de structures définies à partir d’un logiciel de conception assistée par ordinateur (CAO). Il en résulte généralement un fichier STL (Surface Tessellation Language). Les données de maillage seront ensuite découpées en tranches pour définir un fichier configuré en couches 2D qui pilotera l'imprimante 3D.

Les matériaux polymères thermoplastiques tels que l'acrylonitrile butadiène styrène (ABS), l'acide polylactique (PLA), le polyamide (PA) et le polycarbonate (PC) ainsi que les matériaux polymères thermodurcissables comme les résines époxy peuvent être utilisés en impression 3D. Les résines époxy sont des matériaux réactifs qui nécessitent une réticulation thermique ou assistée par UV pour terminer le processus de polymérisation. Elles présentent initialement une faible viscosité, qui augmente au fur et à mesure du durcissement et conviennent donc à un tel processus. En fonction du choix des matériaux, l'impression 3D de polymères a trouvé des applications possibles dans l’industrie aérospatiale pour la création de structures légères complexes, l’architecture pour la réalisation de maquettes, les secteurs de l'art ou de l'éducation, et les domaines médicaux pour l'impression de tissus, d'organes ou de prothèses. Cependant, la plupart des produits réalisés en impression 3D polymère sont encore aujourd'hui utilisés comme prototypes conceptuels plutôt que comme composants fonctionnels, car leurs propriétés sont encore insuffisantes en tant que pièces fonctionnelles et structurelles. De tels inconvénients limitent l'usage des pièces polymères imprimées en 3D pour des applications industrielles.

L'impression 3D de composites polymères cherche à résoudre ces problèmes en combinant la matrice et les renforts pour obtenir des propriétés structurelles ou fonctionnelles qui ne peuvent être atteintes par aucun des constituants seuls. L'incorporation de renforts de particules, de fibres ou de nanomatériaux permet la fabrication de composites à matrice polymère qui se caractérisent par des performances mécaniques accrues et une excellente fonctionnalité. Les techniques de fabrication conventionnelles des matériaux composites tels que le moulage et la coulée ne permettent pas de créer des produits de géométries complexes. L’usinage le permet via des processus d'enlèvement de matière. Bien que ces procédés de fabrication et les performances des composites réalisés par ces méthodes soient bien maîtrisés, la capacité de contrôler la structure interne complexe du matériau est limitée. L'impression 3D est capable de fabriquer des structures composites complexes sans produire de déchets. La taille et la géométrie des composites peuvent être modélisées avec précision à l'aide d'outils de conception assistée par ordinateur. Ainsi, l'impression 3D de composites permet d'obtenir une excellente combinaison de flexibilité de processus et de produits hautes performances.

Bien que l'impression 3D ait fait l'objet de beaucoup d'attention au cours des trois dernières décennies, la plupart des articles publiés portaient sur l'introduction de techniques d'impression de matériaux polymères purs. Au cours des dernières années, des progrès considérables ont cependant été réalisés dans le développement de polymères composites à hautes performances, adaptés à l'impression 3D. Dans cet article, après une brève introduction de la technique d'impression 3D utilisée pour les polymères, nous étudions en détail les techniques d'impression et les améliorations des propriétés qui en résultent avec les polymères composites. Les applications biomédicales, électroniques et aérospatiales sont ensuite explorées. On souligne en particulier le travail accompli dans ce domaine au cours des cinq dernières années et les progrès qui en ont résulté. Enfin, nous discutons les limites des technologies actuelles et les perspectives.

Le lecteur peut se reporter aux références bibliographiques  à  s'il souhaite en savoir plus sur les différents points abordés dans cette courte introduction.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm7923


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Futures recherches

Bien que l'impression 3D de composites polymères ait connu des développements importants ces dernières années, elle n'est toujours pas largement acceptée par la plupart des secteurs industriels. Plusieurs limites propres à cette technologie doivent être surmontées :

  • matériau : l’application de l'impression 3D est fortement limitée par les matériaux imprimables disponibles. Actuellement, seuls les polymères thermoplastiques à basse température de transition vitreuse et de viscosité à l’état fondu appropriée, les matériaux sous forme de poudre et quelques photopolymères peuvent être utilisés en impression 3D. Ces matériaux ne peuvent pas répondre à toutes les exigences des applications industrielles et il est donc nécessaire de les diversifier. La synthèse de matrices polymères à propriétés spécifiques, la découverte de nouveaux renforts et de mélanges de composition appropriée sont essentielles pour accroître la polyvalence de la technologie. Des matériaux durables devraient également être développés pour réduire le coût matière et l'impact environnemental ;

  • performance : bien que l'utilisation de polymères composites renforcés permette d'améliorer la performance des objets imprimés en 3D, la plupart d’entre eux ont encore des propriétés mécaniques trop faibles pour remplir les conditions fonctionnelles requises, lorsque l'on compare leurs performances avec celles généralement atteintes pour un objet fabriqué selon les procédés traditionnels de moulage. Une des principales raisons de la faible résistance mécanique est la présence de vide dans les pièces imprimées. L'ajout de renfort peut encore augmenter la porosité en raison de la mauvaise liaison interfaciale avec la matrice et l'amélioration apportée par le renforcement peut être contrebalancée par la porosité induite. Par conséquent, des étapes supplémentaires de post-traitement impliquant une infiltration (pour combler ces cavités) ou une consolidation ont été utilisées pour améliorer leurs performances mais cela augmente encore le coût et le temps de fabrication. Éliminer la formation de vide lors de l'impression et assurer une bonne liaison interfaciale entre la matrice et le renforcement nécessite des travaux de recherche importants. Enfin, les procédés d’impression 3D ne permettent pas encore d’assurer une...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Futures recherches
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HULL (C.W.) -   Apparatus for production of three-dimensional objects by stereolithography.  -  Brevets Google (1986).

  • (2) - LÉVY (G.N.), SCHINDEL (R.), KRUTH (J.-P.) -   Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives.  -  CIRP Annals-Manuf Technol, 52(2) : p. 589-609 (2003).

  • (3) - TYMRAK (B.), KREIGER (M.), PEARCE (J.) -   Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions.  -  Mater. Des., 58 : p. 242-246 (2014).

  • (4) - SUN (Q.), RIZVI (G.), BELLEHUMEUR (C.), GU (P.) -   Effect of processing conditions on the bonding quality of FDM polymer filaments.  -  Rapid Prototyp J., 14(2) : p. 72-80 (2008).

  • (5) - TRAN (P.), NGO (T.D.), GHAZLAN (A.), HUI (D.) -   Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings.  -  Compos Part B : Eng., 108 : p. 210-223 (2017).

  • ...

1 Site Internet

Objects Impossible :

http://impossible-objects.com/

HAUT DE PAGE

2 Normes et standards

A. F2792 (2012), Terminologie normalisée relative aux technologies de fabrication additive. West Conshohocken. Pa, États-Unis : ASTM International.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS