Présentation
En anglaisRÉSUMÉ
L’exploration de la matière se fait, notamment à l’échelle atomique, grâce à l’interaction entre les atomes et un rayonnement incident, qui peut être des photons X, des électrons lents, ou rapides, des neutrons, des rayonnements infrarouges, ultraviolets, hautes fréquences... Les techniques d’exploration présentées ici font essentiellement appel à la diffraction des électrons. Pour comprendre ces techniques, il faut avoir une première approche des interactions particules-atomes et quelques notions de cristallographie.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The exploration of matter is carried out, notably at the atomic level, via the interaction between atoms and an incident radiation that can be X-photons , slow or fast electrons, neutrons, infrared, ultraviolet, high-frequency radiations, etc. The exploration techniques presented in this article are essentially based on electron diffraction. A presentation of the particle-atoms interactions and certain notions on crystallography are required in order to understand these techniques.
Auteur(s)
-
Bernard JOUFFREY : Laboratoire MSS-Mat, UMR-CNRS 8579 - École Centrale Paris
-
Richard PORTIER : École nationale supérieure de chimie de Paris - Université Paris VI
INTRODUCTION
L’exploration de la matière se fait, notamment à l’échelle atomique, grâce à l’interaction entre les atomes (leur noyau ou leur accompagnement électronique) et un rayonnement incident (photons X, électrons lents, électrons rapides, neutrons, rayonnements infrarouges, ultraviolets, hautes fréquences...). Dans ce dossier, il sera essentiellement question de diffraction des électrons. Nous en verrons les principales particularités et ferons quelques références aux rayons X et aux neutrons.
Nous allons, dans cette première partie, présenter une approche des interactions particules-atomes et aborder quelques notions de cristallographie.
Dans une seconde partie Diffraction dans les métaux et alliages : conditions de diffraction, nous présenterons les lois de la diffraction appliquées à l’étude des structures atomiques et, en particulier, à celles des métaux et alliages métalliques.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Principes de base
Pour explorer la matière au niveau atomique, le faisceau incident est composé de particules qui possèdent une onde associée dont la longueur d’onde est de l’ordre des distances interatomiques ou bien inférieure. Ces ondes incidentes (chaque particule a son onde associée) sont en général considérées comme des ondes planes monochromatiques (d’une longueur d’onde bien déterminée), correspondant à un état stationnaire, c’est‐à‐dire que le temps n’intervient pas. On écrit cette onde sous la forme :
avec :
- k :
- vecteur d’onde (que nous définirons plus loin)
- r :
- position où l’onde est considérée.
Cette onde interagit avec l’échantillon. Elle est déviée, c’est‐à‐dire diffusée dans l’espace. La direction de propagation n’est plus unique. L’onde incidente donne naissance à diverses ondes sphériques, de la forme (nous omettons le facteur de normalisation) :
ayant des relations de phase précises entre elles (cohérence). Dans cette formule, k ′ est colinéaire à r, ce qui permet d’écrire k ′ · r comme un produit de modules k ′ · r. L’origine des phases, pour l’onde sphérique, est le cœur du centre diffuseur (atome, électron). L’onde finale sortante, φ f (r ), sera alors donnée par le produit de l’onde incidente exprimée à l’origine du centre diffuseur (de phase k · r cd , où r cd est la position du centre diffuseur), par l’onde sphérique.
Ce que l’on enregistre est une intensité, I (r ).
Le produit donne la probabilité de trouver une particule en...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principes de base
BIBLIOGRAPHIE
-
(1) - GASKILL (J.D.) - Linear systems, Fourier transforms, and optics. - John Wiley & Sons (1978).
-
(2) - BORN (M.), WOLF (E.) - Principles of optics. - Pergamon Press (1975).
-
(3) - FRIEDRICH (W.), KNIPPING (P.), LAUE (M.) - * - Sitz. Bay. Akad. Wiss., 303 (1912).
-
(4) - BRAGG (W.L.) - * - Proc. Camb. Phil. Soc., 17, p. 43 (1913).
-
(5) - DAVISSON (L.), GERMER (L.H.) - * - Nature, 119, p. 558 (1927).
-
(6) - THOMSON (G.P.), REID (A.) - * - Nature, 119, p. 890 (1927).
-
(7) - JOUFFREY (B.) - Cours de physique des solides, partie « Électrons ». - ...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive