Présentation

Article

1 - ÉVOLUTION DE LA RECHERCHE

2 - PHYSIQUE DES POLYMÈRES CONJUGUÉS ET COMPOSANTS

3 - CHIMIE DES POLYMÈRES CONJUGUÉS

4 - CONCLUSION

5 - GLOSSAIRE

6 - SIGLES

Article de référence | Réf : E1862 v2

Évolution de la recherche
Polymères conjugués et électronique organique

Auteur(s) : André-Jean ATTIAS

Relu et validé le 02 oct. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

NOTE DE L'ÉDITEUR

Cet article est la réédition actualisée de l’article E1862 intitulé « Polymères conjugués et polymères conducteurs électroniques » paru en 2002, rédigé par André-Jean ATTIAS.

17/05/2017

RÉSUMÉ

La découverte en 1977 des polymères conducteurs électroniques par dopage de polymères conjugués a ouvert un nouveau champ disciplinaire, l’électronique organique. Dans cet article, après une présentation de l’évolution des centres d’intérêts et des orientations de la recherche dans le domaine des polymères conjugués depuis cette date, sont introduites et expliquées les propriétés semi-conductrices de ces matériaux pour appréhender les principes de fonctionnement de composants (diodes électroluminescentes ou cellules photovoltaïques organiques). Enfin, les tendances en termes de synthèse sont présentées et les nouvelles approches dans le domaine de l’ingénierie des matériaux conjugués sont dégagées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • André-Jean ATTIAS : Professeur - Institut Parisien de Chimie Moléculaire, Sorbonne Universités – Université Pierre et Marie Curie, CNRS UMR 8232, Paris, France

INTRODUCTION

Les matières plastiques, à la différence des métaux, sont réputées ne pas conduire le courant. De fait, elles sont utilisées pour isoler les fils de cuivre des câbles électriques ordinaires.

Vers la fin des années 1970, A.J. Heeger, A.G. MacDiarmid et H. Shirakawa, lauréats du prix Nobel de Chimie de l’année 2000, ont montré qu’après certaines modifications, un plastique peut devenir conducteur de l’électricité, c’est-à-dire « métal synthétique ». Pour ce faire, le polymère doit être conjugué. Pour cela la chaîne principale du polymère doit comporter alternativement des liaisons simples et multiples ; de plus, il doit être « dopé », ce qui consiste à enlever des électrons (par oxydation) ou à en ajouter (par réduction). Ces manques d’électrons (appelés habituellement "trous") ou ces électrons supplémentaires constituent des porteurs de charge qui peuvent se déplacer le long de la chaîne polymère qui devient ainsi conductrice d’électricité.

À la suite des travaux pionniers sur le polyacétylène (1977), les recherches ont porté sur le développement de nouvelles familles de polymères conducteurs électroniques stables à l’air, avec pour objectif l’accroissement de la conductivité de ces matériaux, obtenus sous forme de films ou poudres noirs et insolubles essentiellement. Les recherches se sont focalisées :

  • d’une part, sur l’ingénierie et la synthèse de ces polymères de façon à en contrôler les propriétés électriques, optiques, et la mise en œuvre ;

  • d’autre part, sur la compréhension des mécanismes de transport dans les polymères conjugués au sens large.

Parmi ces polymères conducteurs, seuls ceux issus de la famille du poly(3,4-éthylènedioxythiophène) (PEDOT) trouvent à ce jour des applications en électronique organique soit comme couche pour l’injection de trous au sein de composants, soit comme couche active pour l’électrochromisme organique.

À partir de 1990, de nouveaux domaines d’applications sont apparus, comme la possibilité d’utiliser les oligomères ou polymères conjugués dans leur état non dopé (semi-conducteur) comme couche active au sein de composants pour l’électronique organique : diodes électroluminescentes organiques (acronymes OLED ou PLED en anglais pour organic light emitting diode ou polymer light emitting diode, respectivement), transistors organiques à effet de champ (acronymes OFET ou PFET en anglais pour organic field effect transistor ou polymer field effect transistor, respectivement), cellules photovoltaïques organiques, ou encore lasers organiques pompés électriquement.

A.J. Heeger, A.G. MacDiarmid et H. Shirakawa ont fait des polymères conjugués et des matériaux organiques conjugués de façon plus générale (petites molécules et polymères) un champ de recherche majeur pour les chimistes comme pour les physiciens et les technologues. Ces matériaux sont à l’origine d’une activité scientifique intense, aussi bien au niveau fondamental qu’au niveau des applications. Les matériaux conjugués sont à ce jour présents dans notre environnement quotidien comme couche active au sein des dispositifs d’affichage (écrans de téléphone portable, de tablette, de télévision) et d’éclairage utilisant la technologie OLED.

Cet article présente tout d'abord l’évolution des centres d’intérêts et les orientations de la recherche dans le domaine des polymères conjugués au cours de ces dernières années au travers d’un bref historique.

Puis, dans un premier volet consacré à une approche des phénomènes physiques mis en jeu, le rôle des électrons π dans les systèmes conjugués est rappelé. La description des états d’énergie des polymères conjugués, en termes de structure de bandes qui en résulte, permet de les classer comme des semi-conducteurs organiques : ceci signifie qu’il est possible d’y générer des espèces chargées (par dopage, injection de charges, photo-excitation). Ces porteurs de charges, les mécanismes de conduction à l’origine des propriétés de transport de ces entités dans les polymères conjugués, et les applications en fonction du mode de génération des charges sont présentés.

Enfin, dans un second volet consacré à la chimie de ces matériaux, les grandes tendances en termes de synthèse (méthodes, choix des monomères) sont décrites et les nouvelles approches dans le domaine de l’ingénierie des matériaux conjugués sont dégagées.

Cet article constitue un complément et une actualisation de l’article Polymères conducteurs [E 1 860] du même traité.

Un glossaire et un tableau des sigles utilisés sont présentés en fin d'article.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1862


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Évolution de la recherche

Depuis les travaux en 1977 de A.J. Heeger, A.G. MacDiarmid et H. Shirakawa à l’Université de Pennsylvanie  , les polymères organiques π-conjugués font l’objet de recherches intensives (figure 1 . Ces auteurs ont montré qu’il est possible d’accroître de plusieurs ordres de grandeur la conductivité électrique du trans-polyacétylène, – polymère conjugué unidimensionnel modèle – (de 10−5 à 103 S.cm−1) (figure 1 a ) en le « dopant ». À cette époque, on parlait de dopage chimique.

Qualitativement, le dopage chimique consiste à :

  • d’une part, extraire des électrons de la chaîne polymère (par oxydation) ou à injecter des électrons dans la chaîne polymère (par réduction) ;

  • d’autre part, introduire au voisinage de celle-ci des contre-ions...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Évolution de la recherche
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SHIRAKAWA (H.), LOUIS (E.J.), MACDIARMID (A.G.), CHIANG (C.K.), HEEGER (A.J.) -   *  -  . – J. Chem. Soc., Chem. Commun. – 578 (1977).

  • (2) - CHIANG (C.K.), FINCHER (C.R.), PARK (Y.W.), HEEGER (A.J.), SHIRAKAWA (H.), LOUIS (E.J.), GUA (S.C.), MACDIARMID (A.G.) -   *  -  . – Phy. Rev. Lett. – 39, 1098 (1977).

  • (3) - SKOTHEIM (T.A.), REYNOLDS (J.R.) (eds.) -   Handbook of Conducting Polymers.  -  Third Edition. – CRC Press (2007).

  • (4) - HADZHOANNOU (G.), MALIARAS (G.G.) (eds.) -   Semiconducting Polymers.  -  Second Edition – Wiley (2006).

  • (5) - BREDAS (J.L.), STREET (G.B.) -   *  -  . – Acc. Chem. Res –, 18, 309 (1988).

  • (6) -   *  -  http://www.usinenouvelle.com/article/l-annee-technologique-1997technologies-des-materiauxles-polymeres-conducteurs-trouvent-des-applications-dans-les-couches-mincesc-est-sous-forme-de-revetements-antistatiques-anti-electromagnetiques-ant....

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS