Article de référence | Réf : NM5115 v1

Introduction sur les nanofluides
Nanofluides pour les applications thermiques

Auteur(s) : João-Paulo RIBEIRO, Jean-Antoine GRÜSS

Date de publication : 10 juil. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les efforts visant à améliorer les échangeurs thermiques dans de nombreux secteurs industriels (automobile, électronique...) nécessitent l'intensification des transferts de chaleur par convection. De nouvelles voies d'optimisation doivent donc être étudiées. L’utilisation des nanofluides en tant que fluide thermique est un nouveau domaine encore en phase de recherche. L’influence d'un certain nombre de paramètres, tels que la taille et la forme, les phénomènes aux interfaces entre liquide et particules, sont encore mal compris et caractérisés. Au final, le succès du développement d'un nanofluide industriel demande la résolution simultanée de plusieurs aspects, à commencer par l’amélioration du coefficient d’échange thermique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Les efforts visant à améliorer les échangeurs thermiques dans de nombreux secteurs industriels (automobile, électronique…) nécessitent l'intensification des transferts de chaleur par convection [1] [2] [3] [4] [5]. Les améliorations dites « passives », au niveau des surfaces d'échange, sont une voie déjà largement explorée et atteignent leurs limites. De nouvelles voies d'optimisation doivent donc être étudiées. L'une d'elles consiste à utiliser de nouveaux fluides capables d'accroître les transferts thermiques : c'est le cas des nanofluides.

La définition des termes techniques, en gras dans le texte, est donnée dans un tableau en fin d'article.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm5115


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Introduction sur les nanofluides

João-Paulo RIBEIRO est docteur ingénieur de l’Université de Pau, actuellement postdoctorant au CEA LITEN [email protected]

Jean-Antoine GRÜSS est ingénieur au CEA LITEN à Grenoble [email protected]

Les nanofluides sont des dispersions de particules de taille nanométrique (dont le diamètre est typiquement inférieur à 100 nm), appelées nanoparticules, dans un fluide de base afin d'en améliorer certaines propriétés.

Dans le cas des fluides caloporteurs, un des premiers paramètres à prendre en compte afin d'évaluer le potentiel d'échange de chaleur est la conductivité thermique. Or, les fluides les plus employés tels que l'eau, l'huile ou l'éthylène-glycol (EG) ne disposent que d'une conductivité thermique faible par rapport à celle des solides cristallins. Avec les nanofluides, l'idée est alors d'insérer, au sein du fluide de base, des nanoparticules afin d'augmenter la conductivité thermique effective du mélange. Ce terme nanofluide a été introduit par Choi [8] et reste couramment utilisé pour désigner ce type de suspensions.

L'idée d'améliorer les propriétés thermiques de fluides par l'adjonction de particules n'est pas nouvelle, mais l'utilisation de particules de taille nanométrique permet potentiellement de minimiser considérablement les problèmes d'érosion et de sédimentation rencontrés avec les particules de taille plus élevée. De plus, certains auteurs ont mis en avant des performances thermiques améliorées en conductivité thermique et en échange thermique liquide et liquide/ vapeur dues à la taille nanométrique [9].

Débutée il y a une dizaine d'années, l'activité de recherche sur les nanofluides croît de manière quasiment exponentielle depuis lors (figure 1) pour atteindre, à l'automne 2008, 92 brevets, 268 présentations dans des conférences internationales, 6 livres ou chapitres de livre, 454 articles de revues scientifiques, 34 rapports et 15 thèses sur le sujet (recensement non exhaustif).

Nous donnons en bibliographie [Doc. NM 5 115] quelques documents de référence sur les nanofluides [9]...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Introduction sur les nanofluides
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BONTEMPS (A.), GARRIGUE (A.), GOUBIER (C.), HUETZ (J.), MARVILLET (C.), MERCIER (P.), VIDIL (R.) -   Intensification des échanges thermiques.  -  [BE 2 343] Techniques de l'Ingénieur.

  • (2) - PADET (J.) -   Convection thermique et massique – Principes généraux.  -  [BE 8 205] Génie énergétique (2005).

  • (3) - PADET (J.) -   Convection thermique et massique – Nombre de Nusselt : partie 1.  -  [BE 8 206] Génie énergétique (2005).

  • (4) - PADET (J.) -   Convection thermique et massique – Nombre de Nusselt : partie 2.  -  [BE 8 207] Génie énergétique (2005).

  • (5) - LALLEMAND (A.) -   Écoulement des fluides – Étude physique et cinématique.  -  [BE 8 151] Génie énergétique (1999).

  • (6) - LE...

1 Sources bibliographiques

CHOI (S.) - Enhancing Thermal Conductivity of Fluids with Nanoparticles. - The American Society of Mechanical Engineers, New-York, vol. 231/MD-vol. 66:99-105, nov. 1995.

DAS (S.), CHOI (S.), YU (W.), PRADEEP (T.) - Nanofluids : Science and Technology. - J. Wiley (2008).

YU (W.), FRANCE (D.), ROUTBORT (J.), CHOI (S.) - Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. - Heat Transfer Engineering, vol. 29, p. 432-460 (2008).

TRISAKSRI (V.), WONGWISES (S.) - Critical Review of Heat Transfer Characteristics of Nanofluids. - Renewable and Sustainable Energy Reviews, vol. 11, p. 512-523 (2007).

KABELAC (S.), KUHNKE (J.) - Heat transfer mechanisms in nanofluids – Experiments and theory. - 13 th IHTC, Sydney, 13-18 août 2006.

YU (W.), FRANCE (D.), CHOI (S.), ROUTBORT (J.) - Review and Assessment of Nanofluid Technology for Transportation and Other Applications. - ANL/ESD/07-9 (2007).

OH (D.W.), KWON (O.), LEE (J.S.) - Transient Thermal Conductivity and Colloidal Stability Measurements of Nanofluids by Using the 3 omega Method. - Journal of Nanoscience and Nanotechnology, vol. 8, 10, p. 4923-4929 (2009).

Anonymous - International Nanofluid Properties Benchmark Exercise (INPBE). - (2008) http://mit.edu/nse/nanofluids/benchmark/index.html

WANG (B.), ZHOU (L.), PENG (X.), ZHANG (X.) - Enhancing the effective thermal conductivity of liquid with dilute suspensions of nanoparticles. - Fifteenth Symposium on Thermophysical properties, Boulder, CO, États-Unis, 22-27 juin 2003.

HWANG (Y.), AHN (Y.), SHIN (H.), LEE (C.), KIM (G.), PARK (H.), LEE (J.) - Investigation on Characteristics of Thermal Conductivity Enhancement of Nanofluids. - Current...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS