Article de référence | Réf : NM5600 v1

Mécanisme de fonctionnement
Nanofils de palladium pour détecteurs à hydrogène

Auteur(s) : Fred FAVIER

Date de publication : 10 sept. 2002

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les nanofils de palladium, à l’origine des détecteurs à hydrogène, sont obtenus par dépôt électrochimique contrôlé. Le palladium joue le rôle alors d’éponge à hydrogène. Sont explicités le principe de fabrication et la réponse à l’hydrogène pour deux types de capteurs, ainsi que le mécanisme de fonctionnement des faisceau de nanofils métalliques. Ces capteurs chimiques spécifiques sont plus précis, plus rapides et plus économiques que les capteurs actuels du marché. Avec une réponse exceptionnellement rapide, même à température ambiante et une excellente résistance aux gaz poisons usuels, les capteurs à base de faisceaux de nanofils de palladium se montrent très compétitifs face aux technologies actuelles de détection de l'hydrogène.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Des faisceaux de nanofils métalliques sont obtenus par dépôt électrochimique contrôlé. Ils sont à la base de dispositifs de détection de l'hydrogène. Ces capteurs chimiques spécifiques sont plus précis, plus rapides et plus économiques que les capteurs actuels du marché.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-nm5600


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Mécanisme de fonctionnement

En comparaison avec la multiplication par un facteur 1,8 attendue, nous observons une diminution nettement plus marquée de la résistivité électrique. À 10 % d'hydrogène, elle peut être divisée par 4 pour nos capteurs de type résistif et est quasiment nulle pour ceux de type interrupteur. Ainsi, l'amplitude de variation, comme son sens, est clairement distincte de ce qui est normalement observé avec les capteurs résistifs à hydrogène décrits jusqu'à présent. Un mécanisme intime de fonctionnement doit être avancé pour expliquer le comportement de nos dispositifs à base de nanofils de palladium.

Le mécanisme que nous proposons pour expliciter cette réponse inverse est décrit dans la figure 7 et est basé sur des observations in situ par AFM : avant toute exposition à l'hydrogène, nos capteurs possèdent, en présence d'air, une résistance électrique mesurable (quelques kilo-ohms à quelques centaines de kilo-ohms). Le faisceau de nanofils constituant le capteur comprend alors des fils continus qui relient les contacts à l'argent et d'autres qui présentent des cassures dans le même intervalle (figure 7, cliché A). Sous atmosphère d'hydrogène, le palladium est converti dans la phase thermodynamiquement stable, PdH0,7 (phase β). Cette conversion s'accompagne d'une dilatation du volume du matériau (3,5 % à 25 oC sous 1 atm d'hydrogène) qui ferme les cassures de taille nanométrique tout au long des fils (figure 7, cliché B). Malgré l'augmentation de la résistance intrinsèque de l'hydrure de palladium par rapport au palladium pur, c'est la fermeture de ces cassures qui contribue à l'accroissement du nombre de chemins de passage du courant et corrélativement à la diminution de la résistance électrique observée. De retour à une atmosphère sans hydrogène, des cassures s'ouvrent le long des nanofils (figure 7, cliché C). En mode résistif, quelques fils du capteur restent intacts ; en mode interrupteur, tous les fils, y compris ceux initialement continus, présentent alors des cassures. De nouveau sous hydrogène à même concentration que précédemment, les cassures se referment pour une résistance électrique mesurée identique (figure 7, cliché...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Mécanisme de fonctionnement
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LEWIS (F.A.) -   The Palladium Hydrogen System.  -  Academic Press, New York (1967).

  • (2) - DIMEO (F.J.), CHEN (B.) -   *  -  Proc. 2000 DOE Program Rev. U.S. Department of Energy (2000).

  • (3) - FAVIER (F.), WALTER (E.C.), BENTER (T.), PENNER (R.M.) -   Hydrogen sensors and switches from electrodeposited palladium mesowire arrays.  -  Science, 293, 5538 (2001).

  • (4) - WALTER (E.C.), FAVIER (F.) et PENNER (R.M.) -   Palladium Mesowire Arrays for Fast Hydrogen Sensors and Actuated Switches.  -  Anal. Chem., 74, 1546 (2002).

  • (5) - NG (K.), ZACH (M.P.), PENNER (R.M.) -   Molybdenum nanowires by electrodeposition.  -  Science. 290, 2120 (2000).

  • (6) - PICAUT (J.) -   *  -  Dépôts électrolytiques des métaux nobles. [M 1 625], traité Matériaux métalliques (2002).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS