Présentation
En anglaisRÉSUMÉ
Depuis plus d'un siècle, il était admis pour des raisons théoriques que la résolution optimale des microscopes classiques était limitée à environ 250 nm. La microscopie optique en champ proche permet aujourd'hui de dépasser cette barrière. En se basant sur l'observation de la lumière diffractée par l'objet à seulement quelques nanomètres de sa surface, cette optique nouvelle donne accès au comportement des matériaux en réponse à une excitation électromagnétique avec une résolution de quelques nanomètres, ce qui constitue une avancée technologique spectaculaire dans le domaine.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
For over a century, it had been stated for theoretical reasons that the optimal resolution of traditional microscopes was limited to around 250 nm. The near-field optical microscopy now allows for going beyond this limit. Based upon the observation of the light diffracted by the object at only a few nanometers of its surface, this new optics provides access to the behavior of materials in response to an electromagnetic excitation with a resolution of a few nanometers which represents a spectacular technological breakthrough in this domain.
Auteur(s)
INTRODUCTION
Depuis plus d'un siècle, il était admis pour des raisons théoriques que la résolution optimale des microscopes classiques était limitée à environ 250 nm. La microscopie optique en champ proche permet aujourd'hui de dépasser cette barrière. En se basant sur l'observation de la lumière diffractée par l'objet à seulement quelques nanomètres de sa surface, cette optique nouvelle nous donne accès au comportement des matériaux en réponse à une excitation électromagnétique avec une résolution de quelques nanomètres, ce qui constitue une avancée technologique spectaculaire dans le domaine.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Nano-optique > La nano-imagerie par microscopie optique en champ proche > Recherches actuelles
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanosciences : concepts, simulation et caractérisation > La nano-imagerie par microscopie optique en champ proche > Recherches actuelles
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Recherches actuelles
4.1 Plasmonique
4.1.1 Qu'est-ce qu'un plasmon ?
La plasmonique est une nouvelle voie de recherche en pleine expansion qui repose sur l'étude et la caractérisation d'une certaine catégorie d'ondes évanescentes : les plasmons de surface. Du fait d'un apport énergétique, il peut se produire à la surface d'un conducteur, sous certaines conditions, une mise en oscillation collective des nuages électroniques des atomes qui se traduit par la présence d'une onde électromagnétique évanescente, appelée « plasmon de surface ». Comme toute onde, celle-ci est en partie caractérisée par son équation de dispersion qui régit sa propagation. Cette équation relie les paramètres ω = 2πf (en rad · s–1), qui est la pulsation de l'onde (avec f la fréquence temporelle d'oscillation du champ électromagnétique) et le vecteur d'onde (en m–1). Dans le cas d'une onde se propageant dans le vide à la vitesse de la lumière, l'équation de dispersion est :
avec :
- c :
- (m · s–1) vitesse de la lumière dans le vide.
Dans le cas d'un plasmon de surface, l'équation de dispersion fait intervenir la constante diélectrique de la surface métallique ε 1 et celle du milieu environnant ε 2 , qui dépendent toutes deux de ω :
En règle générale, on observe les plasmons à une interface entre un métal et l'air. Or ε air = 1.
D'où : ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Recherches actuelles
BIBLIOGRAPHIE
-
(1) - * - http://fr.wikipedia.org/wiki/Th%C3%A9orie de la diffraction, Wikipédia, article sur la théorie de la diffraction
-
(2) - LAHMANI (M.), DUPAS (C.), HOUDY (P.) - Les nanosciences : nanotechnologies et nanophysique. - Éditions Belin, p. 134 à 136 (2004).
-
(3) - SYNGE (E.H.) - A suggested method for extending microscopic resolution into the ultra-microscopic region. - Philos. Mag., 6, p. 356 à 362 (1928).
-
(4) - ASH (E.A.), NICHOLLS (G.) - Super-resolution aperture scanning microscope. - Nature, 237, p. 510 à 512 (1972).
-
(5) - POHL (D.W.) et al - Optical stethoscopy : image recording with resolution λ/20. - Appl. Phys. Lett., 44, p. 651 à 653 (1984).
-
(6) - LEWIS (A.), ISAACSON (M.), HAROOTUNIAN (A.), MURRAY (A.) - * - Ultramicroscopy 13, 227 (1984).
- ...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive