Présentation

Article

1 - TECHNIQUES D’OBSERVATION

2 - MOLÉCULES ISOLÉES

3 - SYSTÈMES AUTO-ASSEMBLÉS

4 - MOUVEMENTS MOLÉCULAIRES ET MANIPULATIONS

5 - CONCLUSION ET PERSPECTIVES

6 - GLOSSAIRE

Article de référence | Réf : NM520 v3

Mouvements moléculaires et manipulations
Molécules isolées et auto-assemblées - Déposition, observation, propriétés et applications

Auteur(s) : Frédéric CHERIOUX, Frank PALMINO

Date de publication : 10 avr. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Depuis les années 2000, les nanotechnologies sont en plein développement. Cependant, le terme « nanosciences » est plus approprié car peu d'applications industrielles ont été réellement développées à ce jour. Le changement d'échelle nécessaire pour la mise au point des nano-dispositifs a abouti à une nouvelle approche : l'approche moléculaire. Cette voie est très prometteuse car elle possède de nombreux avantages pour l'expansion des nanotechnologies. Cet article propose d'exposer les principaux développements relatifs à l'élaboration, aux propriétés et aux applications potentielles de nanostructures (supra)moléculaires.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Frédéric CHERIOUX : Directeur de recherche CNRS à l’institut FEMTO-ST (Besançon), France

  • Frank PALMINO : Professeur des universités de Franche-Comté à l’institut FEMTO-ST (Montbéliard), France

INTRODUCTION

Nous pouvons noter depuis les années 2000 un fort engouement de la recherche pour l'étude des systèmes moléculaires isolés et auto-assemblés sur une surface. Cette effervescence est directement liée aux développements des microscopes à champ proche. Cependant, il serait injuste de ne pas attribuer aussi ce phénomène au rapprochement de deux communautés, celle des chimistes et celle des physiciens, restées trop longtemps éloignées. Aujourd'hui, ces deux disciplines se croisent à l'échelle du nanomètre, pour élaborer, fonctionnaliser, positionner et assembler des structures moléculaires dont les applications potentielles semblent innombrables. Les chercheurs imaginent ces dispositifs dans les domaines de la nano-électronique, des nano-biocapteurs, des nano-moteurs, du photovoltaïsme…

Les molécules présentent l’avantage de pouvoir servir de briques élémentaires pour former des systèmes auto-assemblés ou des objets plus complexes. Ce concept est connu sous le nom générique d’approche du « bas vers le haut », dite ascendante ou monumentalisation. Les propriétés des molécules sont modulées par le contrôle de leur architecture, choisie a priori par le chimiste de synthèse en fonction de la topologie (fil, pavage) ou des propriétés physico-chimiques recherchées (catalyse, fluorescence, conduction électronique, etc.). Elles peuvent dans certains cas être stables à pression atmosphérique et sous vide et posséder une durée de vie très importante (certaines molécules ont une durée de vie de plusieurs dizaines d’années) permettant ainsi d’imaginer des applications sur le long terme. En les fonctionnalisant, il est possible de les greffer sur des surfaces (métal, semi-conducteur, isolant) via un groupement spécifique, ou de permettre qu’elles se reconnaissent entre elles pour former des assemblages de grandes dimensions. Les principaux intérêts du greffage ou de l’auto-assemblage sur une surface portent sur le contrôle de l’arrangement spatial et de l’orientation de ces nano-objets, et ce grâce à leurs interactions avec le substrat et entre molécules.

Il existe donc un très grand nombre de molécules susceptibles d'être utilisées mais pour ce faire il est essentiel de pouvoir les étudier non seulement dans un environnement parfaitement contrôlé mais également au sein de structures relativement simples à interpréter. C’est pourquoi on retrouve un grand nombre d’études sous vide portant sur des molécules isolées ou auto-organisées déposées sur des surfaces parfaitement cristallines.

L’observation de tels objets ou structures à l’échelle nanométrique nécessite l’utilisation de microscopes particulièrement performants comme les microscopes à champ proche, tels que les microscopes à effet tunnel et à force atomique et leurs dérivés, inventés dans les années 1980. Dès lors, il est devenu possible d’observer, d’analyser, de contrôler et de manipuler la matière avec une précision atomique permettant ainsi d’assister à une véritable révolution de ce domaine scientifique. C’est cette révolution scientifique que nous souhaitons présenter, non pas d’un point de vue technique instrumentale, mais au travers des principaux résultats obtenus au niveau international dans une approche quasi chronologique allant des systèmes les plus simples aux plus complexes.

La première partie de cet article est consacrée à une brève présentation des techniques de microscopie en champ proche à effet tunnel et à force atomique utilisées pour l’observation des surfaces à l’échelle atomique.

Dans une deuxième partie, nous présentons l’imagerie à haute puis très haute résolution de molécules isolées et assemblées qui permettent de mettre en évidence certains types de liaisons intermoléculaires avant d’aborder la possibilité de changer la conformation des molécules par des interactions contrôlées avec la pointe.

Nous présentons en troisième partie un large éventail de systèmes auto-assemblés, pouvant être constitués de plusieurs molécules différentes et obtenus aussi bien sous vide, à pression atmosphérique et en milieu liquide. Ces systèmes modèles permettent de mettre en évidence les différentes forces d’interactions « molécules/molécules » et « molécules/surface » qui pilotent l’organisation de la matière à l’échelle nanométrique. La compréhension de ces phénomènes a permis de réaliser des réactions chimiques in situ aussi bien sur des surfaces conductrices qu’isolantes pouvant même aboutir à des phénomènes de polymérisation.

La quatrième partie présente les toutes dernières évolutions dans les domaines très complexes des nano-machines et de la manipulation. Il s’agit ici de comprendre le fonctionnement de systèmes moléculaires dynamiques où les notions macroscopiques de la mécanique classique ne s’appliquent plus et où les états quantiques pourraient imposer la nature des mouvements observés. Cet article se termine par l’étude des propriétés physiques comme la conduction électrique ou l’émission de photons à l’échelle d’une molécule unique.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-nm520


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Mouvements moléculaires et manipulations

4.1 Nanomachines

Les travaux récents concernant les nanomachines sont très spectaculaires et en plein développement. Ils ont pour but d’étudier des molécules spécialement synthétisées pour réaliser une fonction électrique et/ou mécanique à l’échelle nanométrique. À cette l’échelle, il est très difficile de savoir et de voir si une molécule glisse ou roule, à quelle vitesse elle se déplace, ou si son mouvement est quantifié ou pas. La notion même de couple au sens mécanique macroscopique est en soi un débat. La réalisation de fonctions de base, comme par exemple la fonction « marche-arrêt » ou la réalisation d’un « cliquet moléculaire » permettant le déplacement et/ou la rotation dans un seul sens, sont des enjeux particulièrement importants pour envisager le développement des moteurs moléculaires. Cela permettrait par exemple de faire tourner des molécules magnétiques et de produire ainsi un courant induit, source d’énergie. Il est à noter que les microscopies à champ proche atteignent ici leurs limites pour l’analyse des objets en mouvement du fait même du temps d’acquisition des images qui est de l’ordre de la minute en général. Nous sommes encore loin d’une observation en temps réel.

En France, l’équipe de Ch. Joachim du CEMES à Toulouse a innové dans ce domaine avec notamment la famille des « landers » et autres « brouettes moléculaires » . Puis est apparue la NanoCar ou voiture moléculaire capable de rouler et de tourner sur une surface d’or grâce à ses roues en fullerène – C60 – (molécule en forme de ballon de football) ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Mouvements moléculaires et manipulations
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BINNIG (G.), ROHRER (H.) -   The scanning tunneling microscope.  -  Scientific American, Vol. 253, p. 40 (1985).

  • (2) - BINNIG (G.), ROHRER (H.) -   Scanning tunneling microscopy.  -  IBM J. Res. Develop., n° 30, p. 355 (1986).

  • (3) - BLÉGER (D.), MATHEVET (F.), KREHER (D.), ATTIAS (A.-J.), BOCHEUX (A.), LATIL (S.), DOUILLARD (L.), FIORINI-DEBUISSCHERT (C.), CHARRA (F.) -   Janus-Like 3D Tectons : Self-Assembled 2D Arrays of Functional Units at a Defined Distance from the Substrate.  -  Angew. Chem. Int. Ed. n° 50 p. 6562 (2011).

  • (4) - BINNIG (G.), QUATE (C.F.), GERBER (C.) -   Atomic force microscope.  -  Phys. Rev. Lett., n° 56, p. 930 (1986).

  • (5) - SUGIMOTO (Y.), POU (P.), ABE (M.), JELINEK (P.), PÉREZ (R.), MORITA (S.), CUSTANCE (O.) -   Chemical identification of individual surface atoms by atomic force microscopy.  -  Nature, n° 446, p. 64 (2007).

  • ...

1 Sites Internet

Nanosciences et nanotechnologies du CNRS : https://www.cnrs.fr/cnrs-images/nano/index.html. Page consultée le 23 septembre 2018.

Techniques de l’ingénieur : https://www.techniques-ingenieur.fr/base-documentaire/innovation-th10/nanosciences-et-nanotechnologies-ti155/. Page consultée le 23 septembre 2018.

Culture science physique, à la découverte des nanosciences : http://culturesciencesphysique.ens-lyon.fr/ressource/nanosciences-Chenevier.xml. Page consultée le 23 septembre 2018.

Galerie d’images STM : http://teams.femto-st.fr/groupe-nanosciences/en/stm-image-gallery. Page consultée le 23 septembre 2018.

Galerie d’images STM et AFM : https://www.pinterest.fr/IOPPublishing/stm-and-afm-favourite-images/. Page consultée le 23 septembre 2018.

Galerie d’images STM et simulation : http://www.polymtl.ca/nanostructures/fr/Galerie.html. Page consultée le 23 septembre 2018.

Au cœur des nanosciences : https://www.canal-u.tv/video/science_en_cours/au_cœur_des_nanosciences.193....

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS