Présentation

Article

1 - GÉNÉRALITÉS SUR LA ROBOTIQUE AGRICOLE

2 - SOLUTIONS DE PERCEPTION POUR LES ROBOTS EN MILIEU NATUREL

3 - MODÉLISATION DES DÉPLACEMENTS EN MILIEU TOUT-TERRAIN

4 - COMMANDE DE ROBOTS MOBILES EN MILIEU NATUREL

5 - SÉCURITÉ ET INTÉGRITÉ EN MILIEU NATUREL

  • 5.1 - Risques d’utilisation
  • 5.2 - Évaluation de la traversabilité

6 - CONCLUSION

Article de référence | Réf : S7786 v1

Sécurité et intégrité en milieu naturel
La robotique agricole : une (r)évolution ?

Auteur(s) : Roland LENAIN

Date de publication : 10 févr. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les pratiques agricoles sont en perpétuelle évolution et ont toujours représenté un moteur de l'innovation technologique, permettant d'atteindre des niveaux de production importants, dans un domaine à fortes contraintes économiques, écologiques et humaines. Aujourd'hui confronté à la nécessaire limitation de l'impact environnemental des activités humaines, de nouveaux outils de production doivent être développés. La réalisation de tâches répétitives par des outils robotiques peut permettre, non seulement de réduire la pénibilité et la dangerosité des tâches, mais également d'envisager de nouvelles méthodologies de production, allant au-delà de l'agriculture de précision.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Roland LENAIN : Directeur de recherche Responsable de l’équipe Robotique et mobilité pour l’environnement et l’agriculture Affiliation Irstea, unité TSCF, Clermont-Ferrand, France

INTRODUCTION

L’agriculture est un secteur exigeant, pour lequel les travaux sont souvent difficiles et qui nécessitent des interventions avec différents outils et machines. La nature des terrains à traiter est également variée, avec des conditions très changeantes en fonction de la météorologie ou de l’humidité. La grande diversité des activités à traiter et la difficulté des interventions rendent les tâches agricoles pénibles, voire dangereuses. En effet, au-delà du risque immédiat lié à l’utilisation de machines de plus en plus imposantes, la pénibilité des travaux à mener et la toxicité des produits utilisés, en font l’une des activités les plus exposées aux risques socioprofessionnels. L’agriculture constitue néanmoins un pilier important de la société puisqu’elle doit être capable de nourrir une population mondiale grandissante. Soumise à des contraintes économiques de plus en plus importantes, la prise de conscience récente de la vulnérabilité de notre planète a ajouté une nouvelle contrainte sur l’impact environnemental des activités humaines. Dans ce contexte, il devient nécessaire pour l’agriculture de repenser son système de production afin de pouvoir conjuguer efficience économique, productivité et respect de l’environnement. La robotique apparaît ainsi une piste prometteuse pour résoudre de tels paradoxes. L’autonomie grandissante des robots rend aujourd’hui envisageable leur utilisation pour intervenir dans des zones difficiles ou pour la réalisation de tâches nécessitant l’emploi de matières dangereuses. En outre, la nécessaire réduction du recours à des produits phytosanitaires entraîne l’accroissement des précisions de traitement, et/ou la réalisation mécanique de certaines tâches requérant des temps de travail bien plus longs. L’introduction d’opérations robotisées rend une telle mutation envisageable et entraîne la vision d’un nouveau modèle de production agricole. Cet impact important est anticipé dans les analyses économiques concernant le développement du marché de la robotique. Une analyse de 2014 ( https://www.tractica.com) prévoit ainsi une croissance considérable des revenus dans ce domaine avec un chiffre s’élevant à 74 milliards de dollars en 2024, contre moins de 3 milliards en 2015, en faisant le deuxième marché de la robotique. Cependant, pour atteindre ces niveaux, les performances des robots doivent être compatibles avec la diversité des tâches à réaliser, ainsi qu’avec la forte variation des contextes de travail. Les conditions climatiques et les différents types de sol rencontrés tout au long de l’année dans le contexte agricole entraînent en effet de fortes disparités sur le comportement des robots, aujourd’hui performants lorsque les conditions d’interaction sont bien maîtrisées.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7786


Cet article fait partie de l’offre

Industrie du futur

(105 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Sécurité et intégrité en milieu naturel

5.1 Risques d’utilisation

Si la robotique agricole peut réduire considérablement les risques socioprofessionnels de l’agriculteur, il est fondamental que l’emploi de robots n’en crée pas de nouveaux. En effet, le contrôle précis des déplacements, détaillé précédemment, est une composante essentielle de l’efficience des robots mobiles évoluant en milieux tout-terrain. Néanmoins, celui-ci ne gère pas les risques inhérents aux déplacements d’une plate-forme autonome, dont la masse peut atteindre plusieurs tonnes. En milieux urbains ou dans les ateliers, les principaux risques considérés sont liés à la collision avec un obstacle, vu de façon binaire. En effet, dans ces milieux structurés, les robots évoluent souvent sur des sols plats et adhérents, et leurs propriétés dynamiques sont constantes. Celles-ci ne dépendent principalement que de leurs paramètres de conception. En milieux agricoles et en fonction des travaux à réaliser, les paramètres d’interaction s’avèrent variables. Les cas de chargement peuvent différer de façon très significative (une vendangeuse, par exemple, peut passer d’une masse de 9 tonnes à vide à 12 tonnes lorsqu’elle est chargée), et les sols peuvent être irréguliers, pentus et avec une adhérence aléatoire. Lors de son évolution sur de tels terrains, un robot peut être confronté à plusieurs types de risque, induisant au mieux un échec de la mission, au pire des dégâts matériels, voire humains, en fonction de la taille de la machine. On distingue les risques suivants :

  • renversement ou basculement ;

  • perte de contrôle ;

  • collision ou chute ;

  • dégradation de la précision.

Ces risques peuvent être regroupés autour de la notion d’intégrité de la tâche robotique. Il s’agit alors pour le robot d’accomplir sa mission en maintenant ses capacités d’action quelle que soit la situation rencontrée. Comme évoqué précédemment, les risques dépendent fortement de la configuration du robot (masse, chargement, géométrie, etc.), ainsi que des conditions de sol et d’interaction avec l’environnement. Aussi, le maintien de l’intégrité du robot ne peut être uniquement considéré comme un problème de (re)planification. La capacité du robot à réaliser une tâche dépend...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Industrie du futur

(105 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Sécurité et intégrité en milieu naturel
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BRACONNIER (J.B.), LENAIN (R.), THUILOT (B.) -   Ensuring path tracking stability of mobile robots in harsh conditions : An adaptive and predictive velocity control.  -  In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 5268-5273. IEEE (2014).

  • (2) - CAMPION (G.), BASTIN (G.), D’ANDRÉA-NOVEL (B.) -   Structural properties and classification of kinematic and dynamic models of wheeled mobile robots.  -  In IEEE International Conference on Robotics and Automation, pages 462-469, Atlanta, Georgia (USA) (1993).

  • (3) - DEBAIN (C.), DELMAS (P.), LENAIN (R.), CHAPUIS (R.) -   Integrity of an autonomous agricultural vehicle according the definition of trajectory traversability.  -  In Ageng 2010, international conference on agricultural engineering, 06/09/2010, clermont-ferrand (2010).

  • (4) - HORNUNG (A.), WURM (K.M.), BENNEWITZ (M.), STACHNISS (C.), BURGARD (W.) -   Octomap : An efficient probabilistic 3d mapping framework based on octrees.  -  Autonomous Robots, 34(3) : 189-206 (2013).

  • (5) - IBAÑEZ-GUZMAN (J.), LAUGIER (C.), YODER (J.D.),...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Industrie du futur

(105 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS