Présentation

Article

1 - CARACTÉRISTIQUES GÉOMÉTRIQUES ET HYDRODYNAMIQUES

2 - PROPULSEURS DÉRIVÉS DE L’HÉLICE

3 - CAVITATION

4 - EXCITATIONS DES VIBRATIONS DE NAVIRE PAR LES HÉLICES

5 - PROJET D’HÉLICE

6 - FABRICATION DES HÉLICES

7 - ENTRETIEN DES HÉLICES

  • 7.1 - Diverses causes de détérioration des hélices
  • 7.2 - Opérations d’entretien

8 - BRUIT D’HÉLICE ET VIBRATIONS DES PALES

9 - ANNEXE : THÉORIE TOURBILLONNAIRE DE L’HÉLICE

Article de référence | Réf : B4360 v1

Projet d’hélice
Hélices marines

Auteur(s) : Max AUCHER

Date de publication : 10 févr. 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Max AUCHER : Ingénieur Général de l’Armement - Ancien Directeur du Bassin d’Essais des Carènes de Paris

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L’utilisation de l’hélice pour la propulsion des navires a vu le jour dans la première moitié du 19 e siècle lorsque les machines à vapeur alternatives eurent atteint un degré de fiabilité et un rendement acceptables pour pouvoir concurrencer les bateaux à voiles pour lesquels l’énergie du vent était gratuite. Ce n’est que dans la deuxième moitié du 19 e siècle que l’hélice l’emporta définitivement sur les voiles et les roues à aubes, ces dernières n’étant plus guère utilisées de nos jours que dans quelques cas pour la navigation intérieure dans un but plutôt touristique.

Plusieurs pays revendiquent la paternité de l’invention de l’hélice dans les années 1830. Côté français, l’inventeur de l’hélice est Frédéric Sauvage dont le brevet a été déposé en 1832.

Les premières hélices n’étaient ni plus ni moins qu’une vis d’Archimède à deux filets dont la longueur était égale au pas géométrique. Le commandant d’un navire qui avait vu son hélice réduite accidentellement à la moitié de sa longueur constata, non sans surprise, que la vitesse de son navire en était augmentée. Ainsi, par modifications successives de la forme des pales et de leur nombre résultant d’essais sur modèles et sur bateaux réels, l’hélice aboutit aux formes actuelles. Sauf pour des applications spéciales, l’hélice est l’organe propulsif de presque la totalité des bateaux depuis le petit bateau de plaisance motorisé jusqu’aux énormes pétroliers de plusieurs centaines de milliers de tonnes.

De nombreux essais d’hélices modèles ont permis de définir leurs caractéristiques hydrodynamiques (poussée, rendement) en fonction du nombre et de la géométrie des pales. Ces résultats, publiés sous forme de courbes, permettent de définir rapidement la géométrie des hélices répondant en première approximation à des spécifications données.

Deux problèmes importants font encore aujourd’hui l’objet de nombreuses recherches destinées à améliorer les performances des hélices : la cavitation et les vibrations de navires induites par le fonctionnement de l’hélice. Le développement de l’hydrodynamique appliquée aux hélices et des calculateurs de plus en plus puissants permet d’aborder ces deux problèmes d’une façon plus rationnelle et de définir les tracés d’hélices donnant le meilleur compromis entre diverses contraintes (rendement, cavitation, vibration, tenue mécanique, etc.). C’est ce que nous allons plus particulièrement développer dans cet article.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-b4360


Cet article fait partie de l’offre

Transport fluvial et maritime

(52 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Projet d’hélice

Un projet d’hélice est le résultat des discussions d’un ménage à trois : l’architecte naval définit les formes de carène, le motoriste les caractéristiques du moteur qu’il propose et le spécialiste hélice, parent pauvre du trio, doit s’adapter aux contraintes imposées par les deux autres. Le degré de complexité du calcul d’une hélice dépend du navire ou de l’engin qu’elle doit propulser. S’il s’agit d’une hélice pour moteur out-board destinée à propulser un navire de plaisance, ses caractéristiques sont prises dans un catalogue de modèles suivant la puissance du moteur et les dimensions du bateau à propulser. S’il s’agit d’un chaland automoteur, ses caractéristiques sont également déterminées à partir du moteur et du tonnage du chaland par des méthodes de calcul simples basées sur les courbes données dans le paragraphe 1 mais il faudra tenir compte du sillage.

On décrit ci-après les étapes successives du calcul d’une hélice dans le cas où celle-ci constitue un élément important du projet de navire et malheureusement une source éventuelle d’ennuis dans l’exploitation du navire (par exemple porte-conteneurs rapides, navires de guerre).

L’organigramme de la figure 44 décrit les principales étapes de calcul complet d’un projet d’hélice, le calcul pouvant être arrêté à un stade quelconque selon le type de navire et les spécifications plus ou moins sévères imposées. De même, au début, certaines étapes peuvent être sautées, moyennant quelques formules théorico-empiriques.

5.1 Données de départ

Connaissant le déplacement du navire et la vitesse souhaitée, une première estimation faite par le chantier de construction permet de choisir le moteur existant le mieux adapté au problème. En effet, il est rare...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Transport fluvial et maritime

(52 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Projet d’hélice
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - VAN LAMMEREN (P.A.), VAN MANEN (J.D.), OOSTERVELD (M.W.) -   The wageningen B-screw series.  -  Society of Naval Architects and Marine Engineers (NSMB), 1969.

  • (2) - CARLTON (J.S.) -   Marine Propellers and Propulsion.  -  Butterworth Heineman Ltd, 1994.

  • (3) - KUIPER (J.) -   The wageningen propeller series (caractéristiques d’hélices et d’hélices sous tuyère, plus disquette donnant le développement en série des caractéristiques des hélices citées dans le livre).  -  Marin Software Engineering Dept, mai 1992.

  • (4) - Bureau Veritas -   Building and operations of vibrations free propulsion plant and ships (construction et solutions pour supprimer les vibrations des navires dues à la propulsion),  -  NR. 207 - SMSE, 1987.

  • (5) -   Proceedings of ITTC :  -  Comptes-rendus des Conférences Internationales des Bassins de Carènes. L’International Towing Tank Conference (ITTC) comprend entre autres un comité hélice et un comité cavitation dont les rapports (tous les 3 ans) font la synthèse des travaux effectués...

1 Fabricants et fournisseurs

(liste non exhaustive)

Renou-Dardel SA.

Helicia SA.

Alstom Marine http://www.marine.alstom.com

Alstom Power Conversion http://www.powerconv.alstom.com

Moteurs Baudouin http://www.moteurs-baudouin.fr

DCN http://www.dcn.fr

France Hélices http://www.francehelices.fr

Rolls-Royce http://www.rolls-royce.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Transport fluvial et maritime

(52 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS