Présentation

Article

1 - RAPPEL SUR L'ANALYSE DE CYCLE DE VIE

2 - COMMENT RÉALISER L'ACV D'UN VÉHICULE ÉLECTRIQUE ?

3 - LES GRANDES CONCLUSIONS DE L'ACV DU VÉHICULE ÉLECTRIQUE

4 - SUJETS EXPLORATOIRES

5 - QUELLES RECOMMANDATIONS POUR L’ACTION ?

  • 5.1 - Résumé des éclairages fournis par les ACV de véhicules électriques
  • 5.2 - Perspectives d’évolution pour l’ACV des véhicules électriques
  • 5.3 - Questions méthodologiques relatives à l’ACV des véhicules électriques
  • 5.4 - Recommandations pour les acteurs économiques et les pouvoirs publics

6 - CONCLUSION

7 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : TRP1020 v1

Conclusion
Analyse de cycle de vie des véhicules électriques

Auteur(s) : Hélène TEULON

Date de publication : 10 avr. 2023

Cet article offert jusqu'au 31/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Après un bref rappel sur les principes clés de l’analyse de cycle de vie (ACV), cet article montre comment cette méthode permet d’évaluer la performance environnementale des véhicules électriques (VE) et de la comparer à celle des véhicules thermiques. Les résultats présentés confirment la pertinence des VE sur l’indicateur « Effet de serre » en France, ainsi que sur d’autres indicateurs, mais soulignent aussi des transferts d’impacts. L’article détaille également les évolutions méthodologiques qu’appelle l’ACV des véhicules électriques, et envisage enfin les pistes d’action écologiques à la portée des industriels et des pouvoirs publics pour la mobilité électrique.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Life Cycle Assessment of Electric Vehicles

After a brief review of the key principles of Life Cycle Assessment (LCA), this article shows how this method can be used to evaluate the environmental performance of electric vehicles (EVs) and compare them to that of combustion vehicles. The results presented confirm the relevance of EVs on the "Greenhouse effect" indicator in France, as well as on the other indicators, but also highlight the transfer of impacts. The article also details the methodological changes required for the LCA of electric vehicles, and finally considers the ecological actions available to manufacturers and public authorities for electric mobility.

Auteur(s)

  • Hélène TEULON : Fondatrice du cabinet Gingko 21 - Gingko 21, Paris, France

INTRODUCTION

Depuis quelques années, en France comme dans le monde, l’électrification du parc automobile connaît une croissance accélérée. Cela répond aux besoins de décarboner massivement l’économie, et se réalise sous la pression conjointe des réglementations et des attentes du public. Il est clair que le véhicule électrique élimine de fait les émissions de la combustion en phase d’usage, mais constitue-t-il pour autant une solution crédible pour la mobilité décarbonée ? En d’autres termes, le véhicule électrique apporte-t-il un véritable bénéfice environnemental ? Et si oui, est-ce bien vrai dans tous les contextes ? Y aurait-il des arbitrages selon les impacts considérés ?

L’analyse de cycle de vie (ACV) est l’outil idéal pour traiter ces questions. Et réciproquement, l’exemple des véhicules électriques est souvent utilisé pour expliquer au grand public les fondements de l’ACV, avec les transferts d’impacts entre étapes du cycle de vie : un véhicule « zéro émission » certes à l’usage, mais pour lequel il faut bien produire l’électricité pour l’alimenter, et en amont des batteries qu’il faudra recycler en fin de vie. Ce cas d’école simple et connu de tous permet d’illustrer parfaitement la notion de « cycle de vie », dont la prise en compte intégrale, de l’extrême amont jusqu’à l’extrême aval, permet seule de poser un diagnostic valide sur l’impact environnemental du véhicule, et de le comparer sur une base fiable avec d’autres types de véhicules, qu’ils soient thermiques, hybrides ou à hydrogène…

Le sujet intéresse également les pouvoirs publics, les professionnels et les experts, prenons en pour preuve la large littérature disponible sur le sujet, sur tous les continents. En France, l’Ademe, soucieuse d’éclairer les choix du gouvernement, a ainsi commandé une étude d’ACV comparative de véhicules électriques et de véhicules thermiques, publiée en 2013 . Une dizaine d’années plus tard, les résultats en sont encore largement valides, car l’étude était prospective et les hypothèses ont été dans l’ensemble confirmées.

C’est également un sujet d’étude pour les professionnels de l’industrie automobile, qui réalisent depuis de nombreuses années des ACV de leurs véhicules, soit pour communiquer auprès de leurs clients, soit pour orienter les choix de conception dans une perspective de réduction des impacts environnementaux – on parle alors d’éco-conception –, soit enfin plus récemment pour évaluer leur performance environnementale globale d’entreprise sur un périmètre incluant l’usage des véhicules qu’ils mettent sur le marché, c’est ce que l’on appelle le « scope 3 » du bilan carbone.

C’est enfin un sujet d’approfondissement méthodologique pour les experts en ACV, qui sont confrontés à travers l’ACV du véhicule électrique à bon nombre de sujets de recherche actuels en ACV.

Après un bref rappel sur l’ACV dont pourront s’affranchir les lecteurs déjà compétents sur le sujet, cet article traite tout d’abord de la méthodologie spécifique à la réalisation d’une ACV pour un véhicule électrique, puis des résultats des ACV réalisées dans ce domaine. Il cherche ensuite à éclairer les problématiques pouvant faire l’objet d’évolutions méthodologiques au cours des prochaines années, et se conclut sur les décisions stratégiques que l’on pourrait tirer des résultats de ces travaux, tant au niveau de l’Etat qu’à celui des entreprises.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Cet article offert jusqu'au 31/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

batteries   |   greenhouse gas   |   electric mobility   |   planetary boundaries

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp1020


Cet article fait partie de l’offre

Véhicule et mobilité du futur

(79 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

6. Conclusion

Ce panorama des études ACV relatives aux véhicules électriques met en évidence la complexité du sujet. Il montre notamment que la simple substitution des véhicules thermiques par des véhicules électriques ne représente pas une solution à la hauteur des enjeux environnementaux du XXIe siècle, et qu’elle est même susceptible de générer de nouveaux problèmes dès lors que l’on considère la multiplicité des impacts potentiels.

L’analyse de ces études souligne également le besoin de conforter les hypothèses, données et règles méthodologiques pour rendre les résultats des ACV encore plus robustes – nécessité d’autant plus grande qu’apparaissent d’autres vecteurs d’énergie dans la mobilité, comme l’hydrogène, dont les bilans quantifiés  conduisent à des conclusions parfois contraires aux intuitions partagées par le public et les médias…

Appliquée à l’emblématique exemple de l’automobile en mutation, l’approche objective et quantitative de l’ACV permet de poser les arbitrages de façon claire, et de tirer des conclusions en matière d’action, aussi bien pour les pouvoirs publics que pour les acteurs économiques et les citoyens.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Cet article offert jusqu'au 31/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(79 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HAWKINS (T.R.), SINGH (B.), MAJEAU-BETTEZ (G.), STRØMMAN (A.H.) -   Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles.  -  https://doi.org/10.1111/j.1530-9290.2012.00532.x (2013).

  • (2) - NOTTER (D.A.), GAUCH (M.), WIDMER (R.), WÄGER (P.), STAMP (A.), ZAH (R.), ALTHAUS (H.-J.) -   *  -  . – Contribution of Li-ion batteries to the environmental impact of electric vehicles (2010).

  • (3) - SZCZECHOWICZ (E.), DEDERICHS (T.), SCHNETTLER (A.) -   *  -  . – Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany (2012).

  • (4) - SHARMA (R.), MANZIE (C.), BESSEDE (M.), CRAWFORD (R.H.), BREAR (M.J.) -   *  -  . – Conventional, hybrid and electric vehicles for Australian driving conditions. Part 2 : Life cycle CO2-e emissions (2013).

  • (5) - BOUTER (A.), HACHE (E.), TERNEL (C.), BEAUCHET (S.) -   Comparative environmental life cycle assessment of several powertrain types for cars and buses in France for two driving cycles : “worldwide harmonized light vehicle test procedure” cycle...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Cet article offert jusqu'au 31/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(79 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS