Présentation
En anglaisRÉSUMÉ
La mobilité est en évolution technologique et sociétale. Nous assistons à une mutation rapide vers la mobilité électrique principalement aujourd’hui à batterie. Un manque d’autonomie et une recharge trop longue sont souvent cités comme les principaux freins au développement des véhicules électriques. Les véhicules à pile à combustible avec un stockage d’hydrogène sous forme comprimée à 350 ou 700 bar peuvent parcourir plus de 500 km, en une seule recharge d’une durée de 3 à 5 minutes ; ils apparaissent plus que jamais comme une alternative crédible aux véhicules actuels. Cet article traite de la technologie des piles à combustible appliquée aux transports terrestres en analysant les aspects technologiques, environnementaux, économiques et politiques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Mobility is evolving both technologically and socially. We are witnessing a rapid shift to electric mobility, mainly today, with battery. A lack of autonomy and charge time too long are often cited as the main obstacles to the development of electric vehicles. Fuel cell vehicles with hydrogen storage in compressed form at 350 or 700 bars can travel more than 500 km, in a single charge lasting 3 to 5 minutes, they appear more than ever as a credible alternative to current vehicles. This article discusses fuel cell technology applied to land transportation by analyzing technological, environmental, economic, and political aspects.
Auteur(s)
-
Joseph BERETTA : Président d’honneur Avere-France - Président Automobile Technology & Mobility Expertise (AT&ME)
INTRODUCTION
Le véhicule électrique à hydrogène est avant tout un véhicule électrique, fonctionnant avec une chaîne de traction électrique identique à celle utilisée dans les véhicules électriques à batteries déjà largement répandus. Il n’y a pas lieu d’opposer le véhicule électrique à batterie et le véhicule électrique à pile à combustible utilisant de l’hydrogène. La seule différence, c’est la façon dont l’énergie est stockée et délivrée au moteur électrique. Dans un véhicule à batterie, l’énergie et la puissance proviennent de la batterie. Pour le véhicule à pile à combustible (PAC), l’énergie est stockée sous forme d’hydrogène dans un réservoir, la puissance est définie par la taille de la pile à combustible qui génère l’énergie électrique pour le moteur.
Pour une étude générale sur les piles à combustible, le lecteur se reportera aux articles Combustible hydrogène – Production [BE 8 565], Combustible hydrogène – Utilisation [BE 8 566], Transport électrique routier – Véhicules à pile à combustible [D 5 570] et Hydrogène [J 6 368].
KEYWORDS
hydrogen storage | fuell cells | electric vehicle | land transportation
VERSIONS
- Version archivée 1 de juil. 2008 par Renaut MOSDALE
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Hydrogène > Utilisation et valorisation de l'hydrogène > Piles à combustible appliquées à la mobilité électrique - La mobilité hydrogène > Aspects environnementaux et énergétiques
Accueil > Ressources documentaires > Mécanique > Machines hydrauliques, aérodynamiques et thermiques > Machines thermiques et systèmes de production d'énergie électrique > Piles à combustible appliquées à la mobilité électrique - La mobilité hydrogène > Aspects environnementaux et énergétiques
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Aspects environnementaux et énergétiques
5.1 Production et distribution de l’hydrogène
L’hydrogène peut etre produit par vaporeformage de combustibles riches en hydrogène. Ce procédé présente un très bon rendement énergétique jusqu’à 90 % (les pertes étant essentiellement thermiques). Cependant le CO2 émis lors de cette transformation est supérieur à la combustion directe de ces combustibles. L’électrolyse de l’eau est le procédé qui permet si l’électricité utilisé est décarbonné d’obtenir de l’hydrogène vert. Le rendement de l’électrolyse peut atteindre 85 % pour la technologie PEM (Proton Exchange Membrane) de grande taille.
Le transport et la distribution de l’hydrogène nécessitent un stockage sous forme de gaz comprimé ou liquide. Les pertes de compression sont de l’ordre de 10 à 20 % en énergie pour des pressions entre 300 et 700 bar. Pour la liquéfaction de l’hydrogène, les pertes sont de l’ordre de 30 % pour les grosses unités de liquéfaction (1 tonne par heure) pour les petites unités de quelques kilogrammes par heure, les pertes peuvent atteindre 150 % ce qui rend cette solution caduque pour les petites unités.
Le transport par route de l’hydrogène liquide est cinq fois plus performant en termes de volume que le transport de l’hydrogène gazeux mais il demande une logistique de cryogénie à la fois délicate et coûteuse. Le transport du gaz comprimé par gazoduc est le plus performant (même s’il exige un investissement élevé), il présente en outre une faible perte d’énergie : 1,4 % sur 150 km.
En conclusion, aux regards des bilans énergétiques de la distribution, il ressort que l’hydrogène doit être transporté le moins possible. Pour les grosses quantités, le transport d’hydrogène liquide est envisageable. Pour l’hydrogène gazeux, le transport par gazoduc s’avère être la meilleure solution. La production directe en station peut être une solution à condition que ce soit une station importante pour plus de 100 véhicules par jour.
HAUT DE PAGE5.2 Usage du véhicule, considérations énergétiques
Si nous voulons faire le bilan énergétique des...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Aspects environnementaux et énergétiques
BIBLIOGRAPHIE
-
(1) - GRIMES (P.G.) - Historic pathways for fuel cells – The new electric century. - IEEE AES Systems Magazine, p. 7-10 (2000).
-
(2) - MOND (L.), LANGER (C.) - A new form of gas battery. - Phil. Mag., vol. 46, p. 296-304 (1889).
-
(3) - BACON (F.T.) - Fuel cells, past, present and future. - Electrochimica Acta, vol. 14, p. 569-585 (1969).
-
(4) - MOSDALE (R.), ESCRIBANO (S.) - * - . – Clefs CEA n° 44, p. 51 (hiver 2000-2001).
-
(5) - MOSDALE (R.), SRINIVASAN (S.) - Analysis of performance and of water and thermal management in proton exchange membrane fuel cells. - Electrochimica Acta, vol. 40, n° 4, p. 413-421 (1995).
-
(6) - MOSDALE (R.), SRINIVASAN (S.) - Modeling analysis of mass transport...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Carburant hydrogène – Spécification de produit – Partie 2 : Applications des piles à combustible à membrane d’échange de protons (MEP) pour les véhicules routiers. - ISO/TS 14687-2 - 2012
-
Hydrogène gazeux et mélanges d’hydrogène gazeux – Réservoirs de carburant pour véhicules terrestres. - ISO/TS 15869 - 2009
-
Considérations fondamentales pour la sécurité des systèmes à l’hydrogène. - ISO/TR 15916 - 2004
-
Appareils de stockage de gaz transportables – Hydrogène absorbé dans un hydrure métallique réversible. - ISO 16111 - 2008
-
Dispositifs de raccordement pour le ravitaillement des véhicules terrestres en hydrogène comprimé. - ISO 17268 - 2012
-
Carburant d’hydrogène gazeux – Stations-services. - ISO/TS 20100 - 2008
-
ed 3.011-13 Fuel cell technologies – Part 1 : Terminology. - ...
ANNEXES
En sus des règles d’homologation classique pour les véhicules thermiques et des règles liées à l’électrification du système de propulsion, les véhicules à pile à combustible sont soumis à des règlements européens spécifiques, comme le CE 79/2009 et sa directive d’application 406/2010. Ces deux règlements imposent notamment d’apporter la preuve de la sûreté de fonctionnement du système hydrogène. Ils imposent également une « réception par type » pour les composants les plus sensibles (ceux à l’intérieur desquels la pression de l’hydrogène gazeux est supérieure à 3 MPa), garantissant leur sécurité par des cycles de tests.
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Ballard (Canada)
Fuel Cells 2000
Société Plug Power
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive