Présentation
En anglaisRÉSUMÉ
L’amélioration de la qualité de l’air et la réduction des émissions de gaz à effet de serre sont les moteurs de la mutation énergétique des transports maritime et fluvial. L’emploi du gaz naturel liquéfié (GNL) comme carburant permet de répondre aux objectifs de ces politiques définies aux niveaux international et européen. Les motorisations utilisant le GNL se développent et l’emploi du GNL repose sur une interaction de règles internationales et européennes avec des normes, lignes directrices et recommandations qui définissent les conditions de construction, d’armement et d’avitaillement des navires ou bateaux utilisant le GNL pour leur propulsion. L’article présente les diverses conditions permettant l’emploi du GNL carburant, y compris les particularités du transport fluvial.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The improvement of air quality and the reduction of greenhouse gas emissions are driving an energy shift in shipping and inland waterway transport. The use of liquefied natural gas (LNG) as a fuel meets the aims of these policies defined at international and European levels. Engines using LNG are spreading, and the use of LNG is regulated by interrelated international and European rules with standards, guidelines and recommendations that define the conditions of the design, manning and bunkering of ships and inland waterway vessels using LNG as fuel. This article presents the various conditions allowing the use of LNG as a fuel, including the specific features of inland waterway transport.
Auteur(s)
-
Jean-Bernard ERHARDT : Ancien membre de la Mission de coordination des actions ministérielles pour l’emploi du gaz naturel liquéfié comme carburant du CGEDD - Expert auprès du Bureau de Normalisation du Gaz (2012-2017), Paris, France
INTRODUCTION
Les transports sont engagés dans une mutation énergétique afin de répondre aux objectifs des politiques d’amélioration de la qualité de l’air et de lutte contre le réchauffement climatique.
Le gaz naturel liquéfié (GNL) apparaît comme un des carburants qui permet d’obtenir à la fois une réduction des émissions de polluants atmosphériques (oxydes de soufre, oxydes d’azote, particules fines) et de gaz à effet de serre (GES). Il est présenté comme le carburant permettant d’atteindre les objectifs des politiques sur le changement climatique et la qualité de l’air.
Le choix du carburant de propulsion est l’élément essentiel de cette adaptation des transports maritime et fluvial au renforcement des règles sur la qualité de l’air et la réduction des émissions de GES, aux côtés d’autres dispositifs techniques (optimisation des formes de coques et des auxiliaires, choix des routes de navigation, vitesse des navires, utilisation de batteries ou de piles à combustibles, propulsion vélique, numérisation de la chaîne logistique permettant de réduire les temps d’attente et la consommation d’énergie).
Pour respecter les règles internationales et européennes, les armateurs maritimes recourent au fioul lourd mais avec l’obligation d’équiper les navires d’épurateurs de fumée (dits scrubbers), ou au fioul lourd à faible teneur en soufre, ou au gazole marin, ou au diesel marine léger, ou au méthanol.
Le GNL est le carburant alternatif pour les transports maritime et fluvial retenu par la directive 2014/94/UE du 22 octobre 2014 sur le déploiement d’une infrastructure pour carburants alternatifs. Toutefois, l’emploi du GNL reste soumis à des contraintes économiques, environnementales et techniques. Dans leurs choix du carburant de propulsion, les armateurs prennent en compte les coûts d’adaptation de leurs flottes que ce soit par la modification des navires en service ou par des constructions neuves, et les coûts d’exploitation des navires sur leur durée de vie, en moyenne de 20 à 30 ans. Les aspects économiques nécessitent une étude particulière et ne seront pas évoqués dans cet article.
Environ 200 navires en service ou en construction sont à propulsion GNL pour un peu plus de 90 000 navires en service, et les projets s’accroissent pour représenter en tonnage brut 13,5 % des commandes pour 2018 et les années suivantes. En fait, l’enjeu majeur est de savoir si le GNL répond aux objectifs fixés par les règles environnementales et climatiques présentes ou susceptibles d’être édictées dans les années à venir. L’article s’attache donc à présenter la mutation énergétique des transports maritime et fluvial conduite par les politiques pour l’amélioration de la qualité de l’air et la réduction des GES, et d’examiner si l’emploi du GNL répond à ces politiques (§ 1). Les technologies de motorisation et leurs impacts sur la réduction des émissions font l’objet de la seconde partie de l’article. Le cadre d’emploi du GNL est décrit dans la troisième partie. Enfin, les particularités du transport fluvial sont traitées dans la dernière partie.
KEYWORDS
LNG as fuel | shipping | inland waterway transport | energetic shift
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Ingénierie des transports > Transport fluvial et maritime > Hydrodynamique, navires et bateaux > Emploi du GNL comme carburant par les transports maritime et fluvial > Technologies de motorisation
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Technologies de motorisation
La présentation des technologies de motorisation s’appuie sur des études publiques, les documents du Conseil international des machines à combustion (CIMAC) et les travaux engagés par l’Organisation internationale de normalisation (ISO).
2.1 Types de motorisations et la réduction des émissions
Le développement des moteurs à gaz commença dans les années 1980 pour la propulsion des méthaniers, en utilisant comme carburant le gaz provenant de l’évaporation du GNL qu’ils transportaient (boil-off gas). Leur application à d’autres navires débuta en 2000 avec un ferry norvégien. Pour ces navires, le GNL est extrait des réservoirs et évaporé pour être injecté comme gaz dans les moteurs.
Les types de moteurs comprennent des moteurs uniquement au gaz et des moteurs diesel mixte (dual-fuel). Les moteurs diesel mixte peuvent être exploités au GNL et au gas-oil.
La plupart des moteurs marins sont à deux temps. Le développement des moteurs utilisant le GNL débuta avec des moteurs quatre temps (basse pression) et continua avec des moteurs deux temps (haute pression). Les moteurs à gaz nécessitent généralement un dispositif d’allumage (bougie d’allumage ou injection pilote, en principe du gas-oil) parce que la température d’auto-allumage du gaz est trop élevée.
Le rapport de SINTEF décrit quatre types de moteurs utilisant le gaz :
-
LBSI : moteurs à mélange pauvre et à taux de compression élevé et à allumage commandé, semi-rapide et rapide (0,5-8 MW) ;
-
LPDF : moteurs diesel mixte à basse pression, semi-rapide, quatre temps, (1-18 MW) ;
-
LPDF : moteurs diesel mixte à basse pression, lent, deux temps, (5-63 MW) ;
-
HPDF : moteurs à injection de gaz à haute pression, lent, deux temps (> 2,5 MW).
Les moteurs utilisant le GNL permettent une réduction significative des émissions de CO2 par rapport aux moteurs utilisant le MGO, allant de 20 à 28 % selon les types de moteur.
Ces...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Technologies de motorisation
BIBLIOGRAPHIE
-
(1) - OCDE/INTERNATIONAL TRANSPORT FORUM - Reducing Sulphur Emissions From Ships - (2016).
-
(2) - MERK (O.) - Shipping Emissions In Ports. - Discussion Paper 2014-20 – OECD/ International Transport Forum (2014).
-
(3) - CE DELFT - Assessment of fuel oil availability – Final report. - MEPC 70/INF.6 (2016).
-
(4) - ENSYS - Supplemental Marine Fuel Availability Study. - MEPC 70/5/5 (2016).
-
(5) - OMI - Rapport du comité de la protection du milieu marin sur les travaux de sa soixante-dixième session. - MEPC 70/18 (2016).
-
(6) - OMI - List of special areas, emission control areas and particularly sensitive sea areas. - MEPC.1/Circ.778/Rev.2 (2017).
-
...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Design of onshore installations. - EN 1473 - 2016
-
Design and testing of marine transfer systems. Design and testing of transfer hoses. - EN 1474-2 - 2009
-
Design and testing of marine transfer systems. Offshore transfer systems. - EN 1474-3 - 2009
-
Testing of foam concentrates of extinguishing powders used on LNG fires. - EN 12065 - 1997
-
Testing of insulating linings for liquefied natural gas impounding areas. - EN 12066 - 1997
-
Suitability testing of gaskets designed for flanged joints used on LNG piping. - EN 12308 - 1998
-
Suitability testing of LNG sampling systems. - EN 12838 - 2000
-
Design of onshore installations with a storage capacity between 5 t and 200 t. - EN 13645 - 2002
-
...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive