Présentation

Article interactif

1 - PRÉSENTATION DES TURBOPOMPES DE MOTEUR-FUSÉE

2 - FONCTIONNEL

3 - MÉCANIQUE

4 - CIRCUITS SECONDAIRES

5 - FABRICATION

6 - CONCLUSION

7 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : TRP4090 v1

Mécanique
Les turbomachines de moteur-fusée à propulsion liquide

Auteur(s) : Giuseppe FIORE

Date de publication : 10 août 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La turbomachine pour moteur-fusée est sans doute parmi les équipements les plus complexes d’un véhicule spatial, un concentré de technologie et de maitrise industrielle qui est souvent étiqueté comme savoir-faire stratégique. Le milieu cryogénique, pratique obligée pour des systèmes à haute performance, rajoute des complexités spécifiques à l’application spatiale, qui jouent un rôle important dans toutes les phases du produit, de la conception à la qualification. Des lignes guides de dimensionnement et d’intégration de turbopompes spatiales sont fournies en passant par les notions élémentaires de dimensionnement fonctionnel pompe, turbine et circuits secondaires, ainsi que par la mécanique, l’analyse vibratoire et la sustentation d’arbre.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Giuseppe FIORE : Chef du service Équipements Propulsifs et Mécanismes - CNES, Paris, France

INTRODUCTION

Le moteur-fusée représente une des merveilles technologiques permettant à l’humanité d’explorer au-delà des limites imposées par la gravité planétaire. Son rôle est de générer de la poussée de façon intense, efficace et contrôlée.

Cette poussée propulse les véhicules spatiaux leur permettant de vaincre la gravité, de s’injecter en orbite et de maintenir une trajectoire stable et compatible avec les objectifs de mission. Sous le terme « propulseur » sont souvent confondus équipements avec fonctions diverses et variées mais avec le même principe de fonctionnement : l’éjection à haute vitesse d’un fluide embarqué produit une accélération du véhicule cohérente avec la conservation de la quantité de mouvement totale du système.

Ces propulseurs peuvent être utilisés pour :

  • contrôler l’orientation d’un satellite lui permettant de pointer ses instruments avec précision ;

  • finaliser sa mise en orbite ou en corriger son éventuelle dérive ;

  • fournir au lanceur l’énorme poussée dont il a besoin pour le décollage (masse Ariane 5 ∼ 800 t) et pour son voyage à des milliers de kilomètres loin de la surface terrestre.

Dans cet article on se concentre sur cette dernière option, caractérisée par des niveaux de puissance difficilement atteignables sans l’aide d’équipements auxiliaires, qui constituent l’ensemble de ce que l’on appelle « moteur-fusée ».

Dans la pratique aérospatiale tout équipement est soumis à des contraintes de masse. C’est ici que la notion de compacité rentre en jeu : le rapport entre poussée et masse d’un moteur-fusée (Thrust-to-Weight Ratio) est un indicateur efficace de la qualité du design d’un moteur. La turbopompe de moteur-fusée joue un rôle essentiel au regard de ces considérations.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp4090


Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Mécanique

Les performances extrêmes demandées aux turbopompes spatiales génèrent des cahiers des charges mécaniques hors norme, aussi bien pour l’ampleur des chargements que pour leur spécificité. La maîtrise de la robustesse mécanique devient en conséquence aussi importante que la capacité à délivrer les performances souhaitées : en absence de redondance, la défaillance mécanique d’une partie de la turbopompe se traduit, dans la presque totalité des cas, en perte de la mission.

Il est donc important de bien connaître les causes potentielles de défaillance dès le début du design mécanique, et de prendre toutes les mesures nécessaires pour améliorer la robustesse vis-à-vis de chaque mode de défaillance.

Cet exercice reste spécifique à chaque architecture, chaque machine, chaque domaine de fonctionnement. Cependant, il est possible d’identifier des traits communs qui peuvent être le point de départ des réflexions en design mécanique :

  • les effets liés aux hautes vitesses de rotation qui introduisent des états de contraintes et des évolutions géométriques sur les pièces tournantes :

    • e.g. la centrifugation peut être le chargement principal d’une pièce,

    • e.g. toutes interfaces et ajustements au montage (jeux/interférences) évoluent avec la mise en rotation,

    • e.g. l’effet gyroscopique fait évoluer les fréquences propres de vibration des pièces tournantes.

  • les vibrations générées dans une turbopompe peuvent endommager la machine et/ou les systèmes environnants :

    • e.g. une fluctuation de 1 % sur une puissance générée de 10 MW est une fluctuation à 100 kW !,

    • e.g. vibrations venant d’un rotor non parfaitement équilibré ; de l’impact périodique du fluide sur les aubes ; des modes acoustiques dans les cavités fluides ;

  • les températures extrêmement chaudes et froides qui font évoluer la géométrie des pièces et leurs caractéristiques thermomécaniques. L’ambiance thermique représente souvent la source principale de chargement pour les pièces qui ne sont pas libres d’accompagner les déformations thermiques imposées :

    • e.g. la résistance mécanique des matériaux subit des fortes variations avec la température,

    • e.g. les assemblages...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Mécanique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GALEOTTA (M.), PRIOTTO (S.), FIORE (G.), THERON (M.), VIEILLE (B.), DREYER (S.) -   BOREAS Liquid Propulsion Rocket Engine Platform : recent advancement in modelling and testing activities.  -  73rd International Astronautical Congress (IAC), Paris, France (2022).

  • (2) - CAISSO (P.), BARTON (J.), ILLIG (M.), MARGAT (T.) -   Development status of the Vulcain 2 engine.  -  36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, U.S.A. ; https://doi.org/10.2514/6.2000-3781 (2000).

  • (3) - HULKA (J.), FORDE (J.S.), WERLING (R.E.), ANISIMOV (V.S.), KOZLOV (V.A.), KOSITSIN (I.P.) -   Modification and verification testing of a Russian NK-33 rocket engine for reusable and restartable applications.  -  AIAA 98-3361.

  • (4) - HAIDN (O.) -   Advanced Rocket Engines.  -  RTO Organization.

  • (5) - BALLARD (R.) -   Liquid Propulsion Systems – Evolution and Advancements.  -  AIAA.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS