Présentation
En anglaisNOTE DE L'ÉDITEUR
La norme NF EN ISO 14253-1 de décembre 2013 citée dans cet article a été remplacée par la norme NF EN ISO 14253-1 (E10-201-1) "Spécification géométrique des produits (GPS) - Vérification par la mesure des pièces et des équipements de mesure - Partie 1 : règles de décision pour contrôler la I104conformité ou la non-conformité à la spécification" Révision 2018
Pour en savoir plus, consultez le bulletin de veille normative VN1802 (mars 2018).
RÉSUMÉ
Savoir estimer ses incertitudes est primordial pour toute entreprise. A ce jour, il n'existe qu'une seule méthode pour y parvenir, mais deux techniques de calcul sont à disposition, à savoir celle du Guide pour l'expression de l'incertitude de mesure (GUM) qui consiste à propager les variances, et celle de son Supplément 1 basé sur la simulation de Monte Carlo, c'est-à-dire la propagation des distributions. L'objet de cet article est de dresser le bilan de ces deux méthodes complémentaires en montrant l'intérêt de la méthode numérique en se basant sur quelques exemples.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Learning how to assess uncertainties is essential for any company. To date, although there is only one method to achieve this, two computational techniques are available, namely the Guide to the expression of uncertainty in measurement (GUM) which consists in propagating variances and that of its Supplement 1 based on the Monte Carlo simulation, that is to say, the propagation of distributions. The aim of this article is to assess these two complementary methods by showing the interest of the numerical method through a few examples.
Auteur(s)
-
François HENNEBELLE : Ingénieur Arts et Métiers – Enseignant-chercheur – Université de Bourgogne / Le2i
-
Thierry COOREVITS : Ingénieur Arts et Métiers – Enseignant-chercheur – Arts et Métiers ParisTech Lille / MSMP
INTRODUCTION
Le supplément 1 (JCGM 101:2008) du guide pour l’expression des incertitudes de mesure de 2008 complète le GUM (Guide to the expression of uncertainty in measurement) (JCGM 100:2008) en proposant une nouvelle approche pour l’estimation des incertitudes de mesure. Il concerne la propagation des distributions des variables (paramètres) d’entrée à travers un modèle mathématique du processus de mesure. C’est une alternative pratique du GUM lorsque celui-ci n’est pas facilement applicable, par exemple, si la propagation sur la base du développement de Taylor au premier ordre n’est pas satisfaisante (linéarisation du modèle inadéquate) ou si la fonction de densité de probabilité pour la grandeur de sortie s'écarte sensiblement d'une distribution gaussienne (conduisant à des intervalles de confiance irréalistes). Il fournit donc une approche générale numérique qui est compatible avec l’ensemble des principes généraux du GUM. L’approche s’applique aux modèles ayant une grandeur de sortie unique. Le supplément 2 de 2011 (JCGM 102:2011), non traité ici, est une extension à un nombre quelconque de grandeurs de sortie.
Après avoir rappelé le principe de l’estimation des incertitudes par la méthode analytique et les inconvénients de celle-ci, l’article expose le principe de la méthode de Monte Carlo en comparaison avec la méthode analytique. Les contraintes et les inconvénients de cette méthode numérique sont également exposés. Le document est basé sur un maximum d’exemples pour donner accès à cette technique au plus grand nombre de personnes.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Instrumentation et méthodes de mesure > Méthodes de mesure > Propagation des distributions - Détermination des incertitudes par la méthode de Monte Carlo > Conclusion
Cet article fait partie de l’offre
Métier : responsable qualité
(252 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Conclusion
Au terme de cet article, on constate donc qu’il n’y a pas de changement de démarche métrologique entre la méthode analytique et la méthode numérique. Malgré les nombreuses critiques, dans beaucoup de cas, la méthode analytique reste très pertinente dans la mesure où les cas de non-linéarité sont rares dans les ordres de grandeur pratiques des sources d’incertitudes. Par contre, dans les processus complexes, la méthode numérique est la seule viable. De plus, une fois que le modèle numérique est établi, il est aisé de faire une modification, contrairement au GUM analytique où il faut refaire toute la démarche. Pour un processus défini, la méthode de Monte Carlo est donc plus flexible. Cette méthode n’est pas si compliquée que cela à mettre en œuvre et permet en plus de documenter le type de loi de densité de probabilité qui représente au mieux l'ensemble des valeurs de la (des) grandeur(s) de sortie. Dans bon nombre d’études, les deux méthodes sont donc faisables et il est intéressant d’effectuer ces deux calculs en parallèle pour vérifier son résultat. En effet, dans toute démarche métrologique, le recoupement des résultats est un élément d’assurance de la qualité.
Cet article fait partie de l’offre
Métier : responsable qualité
(252 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - MULLER (J.W.) - Some second thoughts on error statements, Nuclear Instruments and Methods - Volume 163, Issue 1, Pages 241-251 (1 July 1979).
-
(2) - DOORNIK (J.A.) - * - . – An Improved Ziggurat Method to Generate Normal Random Samples (2005).
-
(3) - BATISTA (E.), PINTO (L.), FILIPE (E.), VAN DER VEEN (A.M.H.) - « Calibration of micropipettes : Test methods and uncertainty analysis » - Measurement, 40, 338-342 (2007).
-
(4) - HENNEBELLE (F.) - « Détermination des incertitudes de mesures sur Machines à Mesurer Tridimensionnelles – Application aux engrenages » - Thèse Arts et Métiers ParisTech – 2007 ENAM 0035, Paris, France, Pastel (5 Décembre 2007).
-
(5) - COOREVITS (T.), HENNEBELLE (F.), SESSA (P.), ROUSSET (N.) - « Accreditation process in gear metrology to standardized measurands on Coordinate Measuring Machine » - Proceeding – International Congress of Metrology, Paris, France (25 June 2009).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Mathematica®, Wolfram Mathematica : http://www.wolfram.com/mathematica et distribué par Ritme, http://www.ritme.com/fr/training/mathematica
Crystal Ball, ORACLE® :
http://www.oracle.com/fr/products/applications/crystalball
GUM Workbench, Metrodata GmbH :
NPLUnc, NPL :
QMSys Uncertainty Workshop :
http://qmsys-uncertainty-workshop.soft112.com
MUSE :
http://sourceforge.net/p/freemuse
R :
MATLAB :
http://www.mathworks.fr/products/matlab
HAUT DE PAGE
JCGM 100:2008(F) - Évaluation des données de mesure – Guide pour l’expression de l’incertitude...
Cet article fait partie de l’offre
Métier : responsable qualité
(252 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive