Présentation
EnglishRÉSUMÉ
Cet article traite de la méthode de collage direct encore nommée adhésion moléculaire en dévoilant les phénomènes et les mécanismes qui permettent d’adhérer sans colle. Il s’intéresse aux cas de la silice et du silicium, car ce sont les matériaux les plus étudiés et physiquement les mieux compris à ce jour. Les points fondamentaux qui autorisent l’adhésion spontanée en termes de qualité (rugosités, planéités), de recouvrement et de propreté des surfaces sont détaillés dans une première partie. Puis les méthodes de caractérisation des forces d’adhésion lors du collage, et de l’adhérence, lors du désassemblage sont explorées. Enfin, les mécanismes physico-chimiques de l’adhérence et les traitements permettant de renforcer la tenue des assemblages sont décrites.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Aurélien MAUREL-PANTEL : Senior Lecturer - Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
-
Frank FOURNEL : Research Director - CEA LETI, CEA, Grenoble, France
-
Thierry BILLETON : Engineer - Laser Physics Laboratory (LPL UMR7538), CNRS, Villetaneuse, France
-
Jérôme DEBRAY : Engineer - Néel Institute (UPR2940), Grenoble Alpes University, CNRS, Grenoble INP, Grenoble, France
-
Christophe HECQUET : Engineer - Charles Fabry Laboratory (LCF UMR8501), CNRS, Palaiseau, France
-
Anne TALNEAU : Research Director - Center for Nanosciences and Nanotechnologies (C2N UMR9001), CNRS, Palaiseau, France
-
Frédéric LEBON : Professor - Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
INTRODUCTION
Direct bonding technology, also known as molecular adhesion, is a very special type of assembly. Its most concise definition seems to be: "spontaneous bonding without the addition of thick liquid". The fact that no liquid is added implies, above all, that no polymeric liquid glue is used. It's a glueless assembly! The fact that it is "spontaneous" implies that the joining of the two surfaces saves energy, in order to propagate the direct bond.
The energy available to the system for bonding is called "adhesion energy". This is to be contrasted with adhesion energy (otherwise known as "bonding energy"), which represents the energy required to separate the assembled surfaces. Adhesion energy, on the other hand, is the energy that helps bring them together.
In direct bonding, to enable spontaneous bonding, the adhesion energy must be greater than the energy cost of bringing the surfaces together, i.e. greater than the elastic energy of deformation induced by the fact that the surfaces to be bonded will touch and come as close as possible, deforming as necessary. It is therefore necessary to have surfaces very close together, generally at a distance of the order of nanometers. At this scale, intermolecular forces between the two surfaces can come into play. This is why the technique is also known as "molecular adhesion". Direct bonding can be achieved by van der Waals forces, hydrogen bonds and, in some cases, capillary forces: these forces are the driving force behind direct bonding. The mechanical energy of deformation, expended in bringing the surfaces together, acts as a brake.
For simplicity's sake, the article focuses on direct bonding of fused silica. This motor and brake are described in detail, enabling us to present the mechanisms of adhesion, and the criteria to be met in terms of surface specifications, or environment, to achieve adhesion. Adhesion energy determines the mechanical strength of the interface. In the final section, we describe the techniques used to maximize adhesion energy.
MOTS-CLÉS
adhésion Adhérence Silice Silicium assemblage collage direct
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux à propriétés mécaniques > Direct bonding - Adhesive-free assembly for extreme environments > Fields of application
Cet article fait partie de l’offre
Métier : responsable bureau d’étude/conception
(372 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Fields of application
Direct bonding is based on bringing two surfaces into contact without the use of glue or additional material. The two surfaces, perfectly polished and clean, establish intermolecular bonds between themselves (Van der Waals, hydrogen or covalent bonds, etc.): these bonds are responsible for bonding the surfaces together.
In the field of terrestrial optics, the first patent for direct bonding dates back to 1928. It was filed by W.E. Williams, on two interferometers featuring blade assemblies made by direct bonding. More recently, in 1963, this technology appeared in a Philips patent for a He-Ne gas laser, whose mirrors, positioned at either end of the cavity, were attached to the cavity by direct bonding.
The process was then little used until the mid-1980s, when the first large-scale applications of direct bonding appeared in the fields of microelectronics and microtechnology. One of the most spectacular is the production of silicon-on-insulator (SOI) structures. This bonding process is used to produce SOI structures for printed circuit boards, as well as sensors, MEMS (MicroElectroMechanical Systems) and hybrid components (figure 1).
In 2024, this technique will be used to manufacture complex optical systems, integrated into complete structures, for various fields of application (space, astronomy, military, etc.), or to create complete optical assemblies (interferometers, image cutters, etc.) (figure 2).
The MUSE (Multi Unit Spectroscopic Explorer) astronomical observation instrument is based on the full-field spectrograph concept, and uses 24 3D spectrographs. The instrument's performance enables it to detect galaxies 100 million times less luminous than the faintest stars observable to the naked eye. For greater efficiency, the fields are sliced by an image slicer. This was developed by the French company Winlight (figure 3). It is one of the largest devices of its type, comprising more than 96 stacks, each containing 12 slides glued together by direct bonding, making a total of 1,152 slides, each with a roughness of 0.4 nm RMS.
This technology is therefore particularly popular in optics. The main advantages are the very high precision of the process, and the stability of the assemblies obtained, as they do not require any mechanical interface parts or glue. The process can also be used to produce highly complex geometries. What's more, the absence of glue reduces the risk of contamination of optical surfaces due to outgassing.
Cet article fait partie de l’offre
Métier : responsable bureau d’étude/conception
(372 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Fields of application
BIBLIOGRAPHIE
-
(1) - WALLIS (G.), POMERANTZ (D.I.) - Field Assisted Glass-Metal Sealing. - In Journal of Applied Physics, 40(10), p. 3946‑3949 (1969). – 10.1063/1.1657121
-
(2) - NESE (M.), HANNEBORG (A.) - Anodic bonding of silicon to silicon wafers coated with aluminium, silicon oxide, polysilicon or silicon nitride. - In Sensors and Actuators A: Physical, 37, p. 61‑67 (1993). – 10.1016/0924-4247(93)80013-7
-
(3) - RIEUTORD (F.), MORICEAU (H.), BENEYTON (R.), CAPELLO (L.), MORALES (C.), -CHARVET (A.-M.) - Rough Surface Adhesion Mechanisms for Wafer Bonding. - In ECS Transactions, 3(6), p. 205‑215 (2006). – 10.1149/1.2357071
-
(4) - BEURTHE (C.) - La fabrication des composants en verre optique. - In Photoniques, 69, p. 40‑43 (2014). – 10.1051/photon/20146940
-
(5) - WOLF (S.), TAUBER (R.N.) - Silicon processing for the VLSI era. Vol. 4: Deep-Submicron process technology. - Lattice Pr (2002).
-
...
ANNEXES
Construction of a Fabry Perot interferometer (etalon) GB312534A
Improvements in or relating to lasers GB1017248A
HAUT DE PAGE2.1 Manufacturers – Suppliers – Distributors (non-exhaustive list)
P0.DE.O Polishing and Design for Optics, 13510 Eguilles, France http://www.podeo-optiques.fr/
BERTIN WINLIGHT, 84120 Pertuis, France https://www.bertin-winlight.fr/
FICHOU HEF Photonics, 94260 Fresnes, France https://optique-fichou.com/
CEA-Leti, 38054 Grenoble, France https://www.leti-cea.fr/cea-tech/letithal
SESO large precision optics and systems by Thales, 13290 Aix en Provence, France http://www.seso.com/
SOITEC, 38190 Bernin, France https://www.soitec.com/fr/
ST-Microelectonics https://www.st.com/content/st_com/en.html
X-Fab,...
Cet article fait partie de l’offre
Métier : responsable bureau d’étude/conception
(372 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive