Présentation
EnglishAuteur(s)
-
Jean-Louis GUSTIN : Rhodia Recherches et Technologies
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La protection des réacteurs et des enceintes fermées par des évents de secours destinés à les protéger contre l'emballement de réactions, fait appel aux méthodes du DIERS (Design institute for emergency relief systems). Les méthodes du DIERS ont déjà fait l'objet de deux articles dans les Techniques de l'Ingénieur.
L'article [SE 5 041] [1] fournit une présentation générale des méthodes du DIERS pour le dimensionnement des évents de secours destinés à protéger les réacteurs et les autres appareils contre des emballements de réactions en phase condensée.
Les méthodes du DIERS distinguent trois catégories de systèmes réactionnels en fonction du type de pressurisation qu'ils produisent :
• Les systèmes à forte pression de vapeur « High vapor systems » font l'objet de ce même article [SE 5 041]. Ils représentent 90 % des cas de dimensionnement d'évents pour le contrôle de réactions.
• Les réactions produisant des gaz incondensables « Gassy reactions » constituent la seconde catégorie de systèmes réactionnels pour laquelle nous disposons de méthodes spécifiques de dimensionnement d'évents de secours. Ces systèmes réactionnels font l'objet de l'article [SE 5 042] [2] dans les Techniques de l'Ingénieur. Ils ne concernent que moins de 10 % des cas de dimensionnement d'évents de secours.
• Les systèmes hybrides, enfin, sont des systèmes réactionnels qui pressurisent les enceintes par pression de vapeur et par production de gaz incondensables, simultanément. Ils font l'objet du présent article [SE 5 043].
La demande concernant le dimensionnement pour ce type de système réactionnel est relativement faible en raison de la complexité de la situation, de celle des méthodes de calcul d'évent et de la difficulté de disposer des données expérimentales nécessaires au calcul. Les systèmes réactionnels hybrides existent pourtant, pour lesquels des méthodes empiriques de dimensionnement d'évents ont parfois été appliquées. On citera, par exemple, le cas de la décomposition de l'eau oxygénée 25 % catalysée par des sels ferriques, qui a fait l'objet d'exercices inter-laboratoires pour l'obtention des données expérimentales nécessaires au calcul et séparément d'un exercice de dimensionnement d'évents entre les membres du DIERS. Le fait de rendre ces méthodes de calcul plus familières peut contribuer à leur utilisation dans l'industrie lorsque cela est nécessaire. Il convient de noter que la méthode de traitement des données expérimentales obtenues lors d'essais dans le VSP, l'appareil de laboratoire du DIERS, décrite dans un article précédent [SE 5 040] [3], permet justement de disposer des informations nécessaires au dimensionnement d'évents pour les systèmes hybrides.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Sécurité et gestion des risques
(477 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Exemple de système réactionnel hybride tempéré : la décomposition de l'eau oxygénée
3.1 Introduction
L'eau oxygénée est une solution aqueuse de peroxyde d'hydrogène de formule H2O2 . C'est un produit industriel de gros volume. La production mondiale d'eau oxygénée s'élève actuellement à trois millions de tonnes. Elle est en croissance de 4 % par an. Les domaines d'application sont le blanchiment de la pâte à papier, le traitement de l'eau, la désinfection et la stérilisation. Ses applications dans l'industrie chimique sont nombreuses et sa transformation dans des produits dérivés comme le percarbonate de sodium sont également en développement. Par comparaison avec les désinfectants dérivés du chlore comme l'eau de Javel, l'eau oxygénée présente l'avantage en matière d'environnement de ne pas entraîner la production de dérivés chlorés indésirables. L'emploi de l'eau oxygénée comme agent de blanchiment ou comme désinfectant conduit à la production de produits oxydés et d'eau. La décomposition de l'eau oxygénée produit de l'eau et de l'oxygène, deux produits non toxiques et non polluants.
La concentration de l'eau oxygénée est variable en fonction de l'usage auquel elle est destinée. Ses propriétés oxydantes ou corrosives ainsi que la classification du produit, dépendent de la concentration de la solution en peroxyde d'hydrogène.
Aux États-Unis, on distingue les catégories suivantes d'eau oxygénée :
-
Solutions de concentration inférieure à 8 % poids
Elles sont utilisées, par exemple, pour la préparation des poudres levantes, des pâtes dentifrices (0,5 % poids), la stérilisation des lentilles de contact (2 % poids), les solutions désinfectantes à usage médical en vente libre (3 % poids), les détergents liquides blanchissants (5 % poids), les décolorants pour les cheveux (7,5 % poids). Ces solutions d'eau oxygénée ne sont pas considérées comme des produits dangereux.
-
Solutions de concentration comprise entre 8 % et 27,5 % poids
Par exemple, les solutions utilisées pour réaliser un traitement de choc de l'eau d'une piscine (27 % poids). Ces solutions sont des oxydants de classe 1. Ce sont des oxydants qui ne provoquent pas l'inflammation d'un carburant avec lequel elle serait mise en contact mais accélère légèrement les phénomènes de combustion.
-
Solutions...
Cet article fait partie de l’offre
Sécurité et gestion des risques
(477 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemple de système réactionnel hybride tempéré : la décomposition de l'eau oxygénée
BIBLIOGRAPHIE
-
(1) - GUSTIN (J.-L.) - Calculs d'évents, méthodes du DIERS, les systèmes à forte pression de vapeur. - [SE 5 041] dans Sécurité et gestion des risques (2006).
-
(2) - GUSTIN (J.-L.) - Calculs d'évents, méthodes du DIERS, Gassy Reactions. - [SE 5 042] dans Sécurité et gestion des risques (2006).
-
(3) - GUSTIN (J.-L.) - Explosion en phase condensée. - [SE 5 040] dans Sécurité et gestion des risques (2002).
ANNEXES
Emergency Relief System Design Using DIERS Technology. - The Design Institute for Emergency Relief Systems (DIERS) Project Manual, AIChE editor, ISBN 0-8169-0568-1, p. 375-376 (1992).
GROLMES (M.A.), LEUNG (J.C.), FAUSKE (H.K.) - Reactive Systems Vent Sizing Evaluations. - International Symposium on Runaway Reactions, Cambridge MA, 7-9 mars 1989.
LEUNG (J.C.) - Simplified Vent Sizing Methods incorporating Two-phase Flow. - International Symposium on Runaway Reactions and Pressure Relief Design, Boston Massachusetts USA, ISBN 0-8169-0676-9, 2-4 août 1995.
FAUSKE (H.K.) - Flashing flows or : Some practical guidelines for emergency releases. - Plant Operations Progress, vol. 4, no 3, p. 132-134, juil. 1985.
Emergency Relief System Design Using DIERS Technology. - The Design Institute for Emergency Relief Systems (DIERS) Project Manual, AIChE editor, ISBN 0-8169-0568-1, p. 75 (1992).
FAUSKE (H.K.) - Revisiting DIERS two-phase methodology for reactive systems twenty years later. - 3rd International Symposium on Runaway Reaction, Pressure Relief Design and Effluent Handling, Cincinnati Ohio, USA (2005).
Emergency Relief System Design Using DIERS Technology. - The Design Institute for Emergency Relief Systems (DIERS) Project Manual, AIChE editor, ISBN 0-8169-0568-1, p. 428-431 (1992).
LEUNG (J.C.) - Chemical Process Relief System Design Seminar. - École des Mines de Saint-Étienne, 9-11 avr. 2003.
LEUNG (J.C.) - Venting of Runaway Reactions with gas Generation. - AIChE Journal, 38(5), p. 723-732 (1992).
LEUNG (J.C.), GROLMES (M.A.) - A Generalized Correlation for Flashing Choked flow of Initially Subcooled Liquid. - AIChE Journal, 34(4), p. 688-691 (1988).
LEUNG (J.C.), EPSTEIN (M.) - Flashing two-phase flow including the effect of non-condensable gases. - ASME Trans. J. of Heat Transfer, 113 (1), p. 269-272, fév. 1991.
LEUNG (J.C.) - The Omega Method for Discharge Rate Evaluation. - International Symposium on Runaway Reactions and Pressure Relief Design, Boston Massachusetts USA, ISBN 0-8169-0676-9,...
Cet article fait partie de l’offre
Sécurité et gestion des risques
(477 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive