Présentation
En anglaisRÉSUMÉ
L’électro-oxydation avancée est un procédé électrochimique qui s’est développé pour le traitement des eaux suite à la production de nouveaux types de matériaux d’anode permettant la génération en surface d’oxydants très puissants comme les radicaux hydroxyles. Cet article présente son principe théorique avec la description des paramètres contrôlant la génération des oxydants, sa mise en œuvre de l’échelle laboratoire à l’échelle industrielle et ses applications en désinfection et en traitement de la matière organique dans les eaux industrielles principalement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Advanced electro-oxidation is an electrochemical process that emerged for wastewater treatment with the production of novel anode materials allowing the surface generation of very powerful oxidizing agents such as hydroxyl radicals. This article presents its theoretical aspects with the description of parameters controlling the oxidant generation, its implementation from laboratory scale to industrial scale and its applications in disinfection as well as in organic matter removal in industrial wastewater principally.
Auteur(s)
-
Emmanuel MOUSSET : Chargé de recherche au CNRS, Docteur ingénieur en Sciences et Techniques de l’Environnement - Laboratoire Réactions et Génie des Procédés (LRGP), CNRS – Université de Lorraine (UMR 7274), Nancy, France
-
Auriane DIAMAND : Chercheur Procédés électrochimiques - VEOLIA Recherche & Innovation, Maisons-Laffitte, France
INTRODUCTION
L’électro-oxydation avancée appartient à la famille des procédés d’oxydation dite « avancée », via la génération d’oxydants puissants initiée de manière directe ou indirecte par oxydation électrochimique.
Compte tenu du coût relativement élevé des procédés électrochimiques, ceux-ci ont été développés initialement pour la fabrication de produits à forte valeur ajoutée. À l’échelle industrielle, les premières applications de l’électro-oxydation ont été la production de chlore-soude et la synthèse de produits organiques.
La raréfaction des ressources en eau et les renforcements des normes de rejet sur les eaux usées nécessitent des méthodes de traitement adaptées. Les traitements biologiques permettent d’éliminer une partie des polluants (fraction biodégradable), mais le recours aux procédés d’oxydation avancée est requis pour le traitement des effluents complexes contenant des molécules toxiques ou peu biodégradables (fraction réfractaire). Parmi ces procédés, l’électro-oxydation avancée possède l’avantage de ne consommer que des électrons, et non des réactifs chimiques coûteux ou instables. Ainsi elle peut devenir compétitive en désinfection et en traitement de la charge organique, en particulier lorsque les concentrations en polluants sont élevées, les débits traités faibles et la salinité du milieu suffisante. Le traitement peut être mené totalement jusqu’à minéralisation de la charge organique réfractaire et/ou toxique, ou seulement partiellement en prétraitement afin d’augmenter la biodégradabilité des molécules avant un traitement biologique.
Cet article présente le procédé d’oxydation anodique avancée appliqué au traitement des eaux en abordant le principe théorique avec les types de matériaux utilisés associés aux différents oxydants formés et la compétition entre le transfert de charge et le transport de masse qui est responsable de la cinétique d’oxydation des composés. La mise en œuvre est ensuite présentée en développant la méthodologie à suivre depuis l’échelle laboratoire jusqu’à l’échelle industrielle, en y détaillant les équipements nécessaires, les aspects sécurité et les coûts engendrés par ce type de procédé. Enfin les différents types d’applications sont mentionnés, accompagnés d’exemples d’efficacité d’élimination.
KEYWORDS
applied électrochemistry | disinfection | advanced electro-oxidation
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Génie des procédés et protection de l'environnement > Traitement des eaux par procédés d’oxydation avancée - Oxydation anodique > Conclusion
Accueil > Ressources documentaires > Environnement - Sécurité > Environnement > Eaux industrielles > Traitement des eaux par procédés d’oxydation avancée - Oxydation anodique > Conclusion
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
Grâce au développement d’électrodes comme les BDD, l’application de l’électro-oxydation avancée au traitement des eaux est devenue plus compétitive au regard des autres procédés d’oxydation avancée, en particulier pour le traitement de la matière organique réfractaire ou toxique en forte concentration contenue dans des effluents chargés en sels.
Les développements en cours concernent :
-
la mise au point de nouvelles électrodes multifonctionnelles, moins chères et/ou plus stables dans le temps (par exemple, rutile dopé au niobium NDR Ti1-xNbxO2 avec x entre 0 et 0,8, Ti/BDD) ;
-
l’optimisation de réacteurs mettant en œuvre des géométries d’électrodes plus complexes (par exemple, électrodes poreuses) afin de gagner en efficacité pour le traitement des polluants en faibles concentrations notamment ;
-
le couplage avec d’autres procédés visant à améliorer les performances et/ou à diminuer les coûts énergétiques (par exemple, ultrasons, rayonnement UV ou visible, traitement biologique, coagulation, membrane…) ;
-
l’utilisation de nouvelles sources d’électricité (par exemple, solaire) ;
-
la récupération d’énergie (par exemple, valorisation de dihydrogène produit à la cathode).
Ce type de procédé doit être développé en gardant à l’esprit qu’il faut maximiser les capacités de traitement tout en minimisant le coût des électrodes et de l’énergie consommée afin de faire face aux contraintes d’applications industrielles.
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - PANIZZA (M.), CERISOLA (G.) - Direct and mediated anodic oxidation of organic pollutants. - Chemical Reviews 109, 6541-6569 (2009).
-
(2) - MOUSSET (E.), HUANG WEIQI (V.), FOONG YANG KAI (B.), KOH (J.S.), TNG (J.W.), WANG (Z.), LEFEBVRE (O.) - A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. - Journal of Materials Chemistry A 5, 24951-24964 (2017).
-
(3) - COMNINELLIS (C.), CHEN (G.) - Electrochemistry for the environment. - Springer (2010).
-
(4) - SIRES (I.), BRILLAS (E.), OTURAN (M.A.), RODRIGO (M.A.), PANIZZA (M.) - Electrochemical advanced oxidation processes : today and tomorrow. A review. - Environmental Science and Pollution Research 21, 8336-8367 (2014).
-
(5) - FONTMORIN (J.M.), FOURCADE (F.), GENESTE (F.), SOUTREL (I.), FLONER (D.), AMRANE (A.) - Direct electrochemical oxidation of a pesticide, 2,4-dichlorophenoxyacetic acid, at the surface of a graphite felt electrode : Biodegradability improvement. - Comptes...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
European Symposium on Electrochemical Engineering (ESEE)
European conference on Environmental Applications of Advanced Oxidation Processes (EAAOP)
HAUT DE PAGE
Normes sur la mesure de la DCO : NF T90-101 - février 2001 - Qualité de l’eau – Détermination de la demande chimique en oxygène (DCO) (Indice de classement : T90-101).
HAUT DE PAGE3.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Fournisseurs d’électrodes BDD
DiaCCon
Neocoat
Condias
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive