Présentation

Article

1 - CONTENU EN SELS ET SALINITÉ

2 - DONNÉES HYDROLOGIQUES DE BASE

3 - ÉQUATION D’ÉTAT DE L’EAU DE MER

4 - PROPRIÉTÉS THERMIQUES ET THERMODYNAMIQUES

5 - PROPRIÉTÉS DE LA COLONNE D’EAU

6 - COEFFICIENTS D’ÉCHANGES MOLÉCULAIRES

7 - AUTRES PROPRIÉTÉS PHYSIQUES

Article de référence | Réf : K170 v1

Propriétés thermiques et thermodynamiques
Propriétés physiques de l’eau de mer

Auteur(s) : Gérard COPIN-MONTÉGUT

Relu et validé le 18 mars 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Gérard COPIN-MONTÉGUT : Docteur ès sciences - Observatoire océanologique de Villefranche-sur-mer - Maître de conférences à l’université Pierre-et-Marie-Curie

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L ’océan mondial (encadré A) recouvre plus de 70% de la surface de la planète Terre et contient 97 % de ses réserves en eau (qui s’élèvent à environ 1 400 × 106 km3). Une douzaine d’espèces ioniques majeures sont présentes dans l’eau de mer. Leur masse totale peut varier d’une eau de mer à l’autre mais leurs proportions relatives restent constantes. On peut ainsi caractériser sans ambiguïté les eaux de mer par leur salinité. La salinité moyenne de l’océan mondial est voisine de 35 et sa température de 4 C.

Compte tenu de sa composition relative stable et du volume énorme qu’elle représente, l’eau de mer constitue une solution électrolytique originale et mériterait plus d’attention de la part des physico-chimistes. Ce n’est pas encore le cas, et les différents manuels de constantes (ou « handbooks ») fournissent peu de renseignements, voire aucun, se rapportant aux propriétés physiques de l’eau de mer ou aux équilibres thermodynamiques dans le milieu eau de mer.

L’eau de mer constitue un milieu physique parfaitement défini par trois variables d’état : salinité S, température t et pression p. Toutes ses propriétés physiques sont donc, en principe, dérivables à partir de S, t et p. Dans le domaine de la physico-chimie classique, on se réfère généralement à une température de 25 C, et à une pression normale de 101 325 Pa (ou de 100 kPa si l’on parle de pression standard). Dans le domaine océanographique, l’océan normal « the standard ocean » (encadré A) a une température de 0 C et une salinité de 35,000. Mais sa pression n’est pas normalisée car une masse d’eau peut être située aussi normalement à 10 000 m de profondeur qu’à la surface.

L’effet des hautes pressions sur les propriétés physiques des solides ou des liquides est difficile à étudier expérimentalement et est souvent mal documenté. Ce n’est pas le cas dans le domaine de l’océanographie où un effort particulier a été fait dans ce sens. La plupart des algorithmes océanographiques permettent de calculer de manière précise les propriétés hydrologiques des eaux de mer en fonction de S, t et p, pour des salinités allant de 0 à 42, des températures allant de –2 à 40 C et des pressions de 1 à 10 000 dbar. Toutefois, ces algorithmes ne sont pas utilisables pour les mers intérieures, telles que la mer Caspienne ou les lacs salés. Ces étendues d’eau ont un contenu salin différent de celui de l’eau de mer.

La dénomination et la définition de certaines propriétés décrites dans cet article sont familières à beaucoup. C’est le cas de la masse volumique ou de la vitesse du son. D’autres propriétés paraîtront plus mystérieuses pour des non- spécialistes, par exemple, l’anomalie thermostérique ou le taux de décroissance adiabatique. Il faut mentionner ces propriétés, car elles font partie des routines de traitement des données océanographiques.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-k170


Cet article fait partie de l’offre

Métier : responsable risque chimique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Propriétés thermiques et thermodynamiques

La plupart des propriétés énumérées ci-dessous dépendent de la salinité, de la température et de la pression. Certaines sont des grandeurs mesurables avec précision en laboratoire. C’est notamment le cas des coefficients d’élasticité, de la capacité thermique et de la vitesse du son. Ces propriétés ont donc été mises à contribution pour élaborer l’équation d’état de l’eau de mer, notamment dans le domaine des pressions élevées. Par raison de réciprocité, elles sont calculables en fonction de p, t, et S, par des algorithmes qui dérivent plus ou moins directement de EOS 80. Nous commencerons toutefois cette énumération par des propriétés qui ne dépendent que de deux variables.

4.1 Température de congélation et d’ébullition. Pression de vapeur saturante

Ces trois propriétés se rapportent à un état d’équilibre entre deux phases : l’eau et la glace pour la température de congélation ; l’eau et la vapeur d’eau pour la température d’ébullition et la pression de vapeur saturante. Dans ces conditions et selon la règle des phases, la variance du système est réduite à 2. La température de congélation et la température d’ébullition ne dépendent donc que de la salinité et de la pression. La pression de vapeur ne dépend, elle, que de la salinité et de la température.

Température de congélation (freezing point), température d’ébullition (boiling point) et tension de vapeur (vapour pressure) sont appelées en anglais colligative properties. En effet, ces propriétés sont reliées entre elles par des relations simples dans le cas des solutions non électrolytiques diluées (lois de cryométrie, d’ébulliométrie et de tonométrie de Raoult). Ce n’est plus exactement le cas pour des solutions ioniques concentrées comme l’eau de mer.

  • La température de congélation des eaux de mer peut être calculée par la formule de Millero et Leung ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Métier : responsable risque chimique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS

Lecture en cours
Propriétés thermiques et thermodynamiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - WILSON (T. R. S.) -   Salinity and the major elements of sea water.  -  Riley and Skirrow éd. Chemical Oceanography, 1, p. 365-413, Academic Press (1975).

  • (2) - UNESCO -   Tenth report of the joint panel on oceanographic tables and standards.  -  Unesco technical papers in Marine Sciences, 36, 36 p (1981).

  • (3) - COPIN-MONTÉGUT (G.) -   Chimie de l’eau de mer.  -  Éd. Institut océanographique (1996).

  • (4) - MILLERO (F. J.), LEUNG (W.H.) -   The thermodynamics of seawater at one atmosphere.  -  Amer. J. Sci., 276 , p. 1035-1077 ( 1976).

  • (5) - WEISS (R. F.), PRICE (B. A.) -   Nitrous oxide solubility in water and seawater  -  . Marine Chemistry, 8, p. 347-359 (1980).

  • (6) - ASME -   1967 ASME steam tables  -  . American Society of Mechanical Engineers. Programme de calcul en lignehttp://www.connel.com/

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Métier : responsable risque chimique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS