Présentation

Article

1 - CONTEXTE

2 - EXEMPLES D’ARCHITECTURES MONOLITHIQUES TRIDIMENSIONNELLES À POROSITÉ HIÉRARCHISÉE

3 - EXEMPLES DE MORPHOSYNTHÈSES CHIMIQUES EN FLUX COAXIAUX

4 - EXEMPLES D'OBJETS NANOMÉTRIQUES À ARCHITECTURES COMPLEXES

5 - CONCLUSION

6 - RÉFÉRENCES BIBLIOGRAPHIQUES

Article de référence | Réf : RE105 v1

Exemples d’architectures monolithiques tridimensionnelles à porosité hiérarchisée
Chimie intégrative : interdisciplinarité en sciences chimiques

Auteur(s) : Rénal BACKOV

Relu et validé le 14 mars 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Le concept de chimie intégrative est basé sur le formidable potentiel de modes de construction permettant de combiner de manière rationnelle formes et fonctionnalités d’architectures complexes de molécules. Cette science se veut interdisciplinaire par nature, puisqu’elle associe synthèse chimique, physico-chimie des fluides complexes, physique et biologique. Cet article débute par la présentation de quelques exemples précis de composés complexes élaborés, couvrant des domaines aussi variés que l’optique, les senseurs ou les procédés de séparations de phases. Sont présentées ensuite les propriétés obtenues grâce à cette approche transverse avant d’évoquer les perspectives d’avenir. La chimie intégrative peut être définie comme une « boîte à outils » contenant les instruments nécessaires à la réalisation d'édifices complexes aux propriétés préétablies.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Integrative chemistry: interdisciplinarity in chemical sciences

The concept of integrative chemistry is based upon the tremendous potential of construction modes allowing for the rational combination of forms and functionalities of complex architectures of molecules. This science is interdisciplinary by nature as it associates chemical synthesis, physico-chemistry of complex fluids, physics and biology. This article starts with the presentation of certain precise examples of elaborated complex compounds, covering domains as large as optics, sensors or phase-separation processes. It then proceeds to presenting the properties obtained via this transversal approach before outlining future prospects. Integrative chemistry can be defined as a "tool-box" containing the necessary elements for the construction of complex architectures with pre-established properties.

Auteur(s)

INTRODUCTION

Le concept de chimie intégrative, où la fonction finale du composé induit les modes de compétences nécessaires pour l’atteindre, ouvre la voie d’une démarche rationnelle de design d’architectures fonctionnelles innovantes, fonctions allant de la catalyse, à l’optique en passant par les senseurs ou les procédés de séparations de phases, etc.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re105

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Sciences fondamentales Physique Chimie Recherche et innovation en physique-chimie Chimie intégrative : interdisciplinarité en sciences chimiques Exemples d’architectures monolithiques tridimensionnelles à porosité hiérarchisée

Accueil Ressources documentaires Procédés chimie - bio - agro Chimie verte Chimie verte : principes, réglementations et outils d'évaluation Chimie intégrative : interdisciplinarité en sciences chimiques Exemples d’architectures monolithiques tridimensionnelles à porosité hiérarchisée

Accueil Ressources documentaires Procédés chimie - bio - agro Opérations unitaires. Génie de la réaction chimique Innovations en génie des procédés Chimie intégrative : interdisciplinarité en sciences chimiques Exemples d’architectures monolithiques tridimensionnelles à porosité hiérarchisée


Cet article fait partie de l’offre

Métier : responsable risque chimique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS

Version en anglais En anglais

2. Exemples d’architectures monolithiques tridimensionnelles à porosité hiérarchisée

2.1 Mousses et structuration

HAUT DE PAGE

2.1.1 Exemple d’une approche bottom-up partant de l’échelle moléculaire

Les mousses sont des systèmes thermodynamiques métastables (mûrissement d’Ostwald, coalescence et drainage détériorent leur texture) structurées par des bords de Plateau, nœuds et films (figure 2). Ces mousses peuvent servir d’ empreintes à un minéral en croissance (polymère inorganique). La morphologie d’une cellule de mousse dépend fortement de la fraction volumique en eau de celle-ci et se met en évidence par la relation suivante :

avec :

LbP
 : 
longueur des bords de Plateau,
a
 : 
épaisseur des bords de Plateau,
r
 : 
courbure des bords de Plateau,
ρ
 : 
fraction volumique en eau d'une mousse.

Mûrissement d'Ostwald : la pression de Laplace régnant au sein de petites bulles d'une mousse est supérieure à celle des grandes. Pour équilibrer le potentiel chimique du gaz au sein des bulles (et tendre vers l'équilibre thermodynamique du système), du gaz va migrer des petites bulles vers les grandes. Ainsi, les petites bulles tendent à être consommées par les grandes, ce qui se traduit par une tendance à l'homogénéité en taille des bulles d'une mousse avec le temps. Il est à noter que ce mûrissement d'Ostwald est applicable également aux émulsions, et dans certains cas au procédé de croissance de particules.

  • Ainsi avec un squelette à base de SiO2, une mousse sèche (à fraction volumique en eau faible) est associée à une structure alvéolaire polygonale (figure 2a), alors qu’une mousse humide (à fraction volumique...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Métier : responsable risque chimique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS

Lecture en cours
Exemples d’architectures monolithiques tridimensionnelles à porosité hiérarchisée
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DUJARDIN (E.), MANN (S.) -   Bio-inspired materials chemistry  -  Adv. Mater. 2002, 14, p. 775.

  • (2) - SANCHEZ (C.), ARRIBART (H.), GIRAUD-GUILLE (M.M.) -   Biomimetism and bioinspiration as tools for the design of innovative materials and systems  -  Nature Materials, 2005, 4, p. 277.

  • (3) - LEHN (J.-M.) -   Supramolecular chemistry : Concepts and perspectives  -  Wiley VCH, 1995.

  • (4) - LIVAGE (J.) -   Vers une chimie écologique : Quand l'air et le feu remplacent le pétrole  -  Journal Le Monde, 26 octobre 1977.

  • (5) - CORRIU (R.) -   Chimie douce : wide perspectives for molecular chemistry. A challenge for chemists : control of the organisation of matter  -  New J. Chem., 2001, 25, p. 2.

  • (6) - RIBOT (F.), SANCHEZ (C.) -   Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry  -  New...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Métier : responsable risque chimique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

ABONNEZ-VOUS