Présentation
En anglaisAuteur(s)
-
Werner BRETTSCHUH : AREVA NP GmbH
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le renouveau du nucléaire a poussé les constructeurs à relancer leurs travaux d'étude, de qualification et de mise au point de nouveaux modèles conçus pour satisfaire aux critères de sûreté, d'exploitation et d'économie, assignés à la 3e génération de réacteurs de puissance.
Le réacteur à eau ordinaire bouillante (REB), filière de centrales électronucléaires la plus répandue au monde après celle du réacteur à eau sous pression (REP), fait l'objet d'un article de base [BN 3 130v2] présentant la conception, le fonctionnement et la sûreté des REB actuellement en service.
La conception de KERENA™ marque une évolution importante : tout en s'appuyant sur la technologie éprouvée et le retour d'expérience d'exploitation, elle satisfait à des caractéristiques de sûreté supérieures et aux exigences les plus rigoureuses des exploitants de centrales électronucléaires, notamment européens.
Les nouvelles centrales de 3e génération, arrivant sur le marché, sont des unités de forte puissance (1 500 à 1 700 MWe), comme l'EPR d'AREVA (cf. [BN 3 102]), ou de puissance moyenne (1 100 à 1 250 MWe), comme l'AP 1000 de Toshiba-Westinghouse, l'une et l'autre étant des réacteurs à eau ordinaire sous pression (REP).
KERENA™, centrale de puissance moyenne (1 250 MWe) développée par AREVA, illustre parfaitement la capacité du REB à satisfaire au niveau d'exigences attendu de cette 3e génération.
KERENA™ est le produit d'innovations précoces et de l'expérience de l'industrie allemande dans la filière à eau bouillante, complétées par les travaux approfondis de conception et de validation expérimentale conduits par AREVA et aboutissant notamment :
-
à la simplification des systèmes et équipements, pour atteindre à la compétitivité avec les plus grands réacteurs ;
-
à l'intégration de systèmes de sûreté passifs, entièrement autonomes et ne nécessitant aucune source d'énergie ou d'information externe, capables de mettre et de maintenir le réacteur à l'état sûr dans le cas très peu probable d'un accident grave – ces systèmes intervenant parallèlement aux systèmes de sûreté actifs redondants et indépendamment. Rappelons que la sûreté passive fait l'objet d'importantes études, depuis de nombreuses années, tout particulièrement pour les petits réacteurs qui seraient destinés à des zones isolées ou à des pays en développement.
KERENA™, concept « avancé » mais prudent, tire le meilleur parti de l'expérience actuelle et des récents progrès de la technologie.
La conception de base (Basic Design) est en cours d'achèvement en collaboration avec la société allemande de production d'électricité E.ON.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Génie nucléaire
(169 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Protection des bâtiments contre les agressions d'origine naturelle ou humaine
La centrale est conçue, conformément aux spécifications des électriciens européens, les European Utility Requirements (EUR), et notamment aux demandes des électriciens finlandais, pour résister aux agressions d'origine externe naturelles ou humaines, telles que séisme, chute d'avion (militaire ou de transport de passagers), ondes de pression engendrées par une explosion. Un des objectifs de conception de la centrale a été d'implanter les systèmes et composants exigeant leur protection contre ces agressions, d'une manière telle que le nombre de bâtiments devant être dimensionnés pour résister aux chargements en résultant, soit aussi réduit que possible.
Les composants et systèmes importants pour la sûreté ou dont l'inventaire radiologique est élevé sont disposés dans le bâtiment réacteur, à l'exception des groupes diesels de secours, du système d'eau de refroidissement en circuit fermé en deux trains et du réseau d'eau industrielle.
Le bâtiment réacteur est le seul bâtiment protégé contre les trois principaux risques hypothétiques cités (séisme, chute d'avion, ondes de pression engendrées par une explosion). Les groupes diesels de secours et les systèmes d'eau de refroidissement importants pour la sûreté sont implantés dans des bâtiments protégés contre les effets d'une chute d'avion par séparation physique (les bâtiments diesel sont distants l'un de l'autre de 120 m). Ces bâtiments sont aussi dimensionnés pour résister à un séisme ou aux ondes de pression engendrées par une explosion.
Les autres bâtiments, ne contenant pas d'équipements importants pour la sûreté ou peu de matières radioactives, sont dimensionnés au séisme selon la pratique industrielle standard dans un souci de réduction du coût de construction de la centrale, ainsi que des dépenses d'exploitation, d'inspection et de maintenance.
Cet article fait partie de l’offre
Génie nucléaire
(169 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Protection des bâtiments contre les agressions d'origine naturelle ou humaine
BIBLIOGRAPHIE
-
(1) - PASLER (D.) - The safety concept of the SWR 1000. - Proc. of ICAPP'04, Pittsburg, PA USA, 13-17 juin 2004.
-
(2) - KOLEV (N.) - External cooling – the SWR 1000 severe accident management strategy – Part 1 : motivation, strategy, analysis : melt phase, vessel integrity during melt-water-interaction. - Proc. of ICAPP'04, Pittsburg, PA USA, 13-17 juin 2004.
-
(3) - SCHMIDT (H.) - Large scale verification of external RPV cooling in case of severe accident. - Proc. of ICAPP'04, Pittsburg, PA USA, 13-17 juin 2004.
-
(4) - KOLEV (N.) - External cooling – the SWR 1000 severe accident management strategy – Part 2 : analysis : vessel, penetrations and containment integrity during melt-water-interaction. - Proc. of ICAPP'04, Pittsburg, PA USA, 13-17 juin 2004.
-
(5) - MESETH (J.) - Experimental verification of SWR 1000 Passive components and systems. - Proc. of ICAPP'04, Pittsburg, PA USA, 13-17 juin 2004.
-
...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Génie nucléaire
(169 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive