Présentation

Article

1 - ÉTABLISSEMENT DES LOIS FONDAMENTALES

2 - APPLICATION : CONDUCTION UNIDIRECTIONNELLE

3 - APPLICATIONS À LA CONDUCTION BIDIRECTIONNELLE OU TRIDIRECTIONNELLE

Article de référence | Réf : BE8200 v1

Application : conduction unidirectionnelle
Transmission de l’énergie thermique - Conduction

Auteur(s) : Alain DEGIOVANNI

Date de publication : 10 avr. 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Alain DEGIOVANNI : Ingénieur de l’Institut national des sciences appliquées de Lyon - Directeur de l’École européenne d’ingénieurs en Génie des matériaux (EEIGM)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le transfert de chaleur ou, pour employer l’expression actuelle, le transfert d’énergie thermique est une transmission de cette énergie d’une région à une autre, sous l’influence d’une différence de température.

On reconnaît classiquement trois modes de transmission : la conduction, le rayonnement et la convection.

Cependant, il ne faudrait pas oublier les cas de transfert entre deux phases d’un même corps (solide-liquide et liquide-vapeur, par exemple). Des puits ou des sources d’énergie sont alors créés sans variation de température sous l’influence de l’évolution, dans le temps, des masses respectives de ces deux phases.

Bien que cet aspect puisse se ramener à un cas particulier de conduction avec variation dans le temps des limites géométriques des phases, nous ne le traiterons pas ici et renvoyons le lecteur aux articles « Transferts de chaleur associés à l’ébullition ou à la condensation » et « Transferts par changement d’état solide-liquide » du présent traité.

Dans le mode conductif, la chaleur diffuse de proche en proche d’une particule à l’autre par chocs ; ce mode nécessite donc la présence de matière mais sans déplacement macroscopique de celle-ci.

Dans les corps solides soit totalement opaques, soit totalement transparents au rayonnement, c’est le seul mode de transmission.

Dans les corps solides semi-transparents, rayonnement et conduction interviennent (cf. article « Rayonnement thermique des matériaux semi-transparents » dans ce traité).

Dans les fluides déformables, cette distinction subsiste, mais il s’y ajoute dans tous les cas un transfert convectif par déplacement relatif des différentes parties non isothermes de ce fluide les unes par rapport aux autres (cf. article « Notions de transfert thermique par convection » dans ce traité).

À l’échelle microscopique, le problème conductif est très complexe et nous ne l’envisagerons pas ici. Nous nous plaçons dans l’hypothèse des milieux continus.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be8200


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Application : conduction unidirectionnelle

2.1 Régime permanent

HAUT DE PAGE

2.1.1 Généralités

L’équation de transfert se réduit à :

div ( λgradT ) + p = 0

Dans le cas de la conduction morte (pas de source interne), le système est à flux conservatif puisque :

div ( λgradT ) = 0 [nbsp ]→[nbsp ] div ϕ = 0

HAUT DE PAGE

2.1.2 Notion de résistance thermique

Pour un système sans source interne et dont la conductivité thermique λ est indépendante de la température (mais pas forcément de l’espace), on introduit la notion de résistance thermique d’un tube de courant (analogue à la résistance électrique).

Soit un tube de courant compris entre deux surfaces isothermes (figure 4) :

ϕ=λ(s)S(s) dT  ds

il vient :

ds λ(s)S(s) = dT ϕ

soit en intégrant entre les deux surfaces isothermes :

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Application : conduction unidirectionnelle
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CARSLAW (H.-S.), JAEGER (J.-C.) -   Conduction of heat in solid.  -  2e Édition Oxford (1959). Clarendon Press.

  • (2) - LUIKOV -   Analytical heat diffusion theory.  -  New York and London (1968). Academic Press.

  • (3) - DE VRIENDT (A.-B.) -   La transmission de la chaleur.  -  Gaetan MORIN Éditeur (1984).

  • (4) - GRIGULL (U.), SANDNER (H.) -   Heat conduction.  -  Springer Verlag (1984).

  • (5) - CHAPMAN (A.) -   Heat transfer.  -  3e Édition. London 1974. Collier Mc MILLAN Int. Édition.

  • (6) - TAINE (J.), PETIT (J.-P.) -   Thermique.  -  Dunod (1989).

  • (7) - GOSSE (J.) -   Guide...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS