Présentation
En anglaisRÉSUMÉ
Un nombre croissant d’applications concrètes nécessite l’évaluation précise des transferts radiatifs. Cet article est consacré au rayonnement des matériaux opaques, c’est-à-dire les matériaux pour lesquels aucun flux du rayonnement incident n’est transmis. Cette condition est fonction de l’épaisseur, de la nature et de l’état de surface du matériau, et de la longueur d’onde considérée. Après un rappel de la loi fondamentale du rayonnement thermique, les caractéristiques des matériaux opaques sont détaillées. Sont ensuite proposées des méthodes d’estimation d’échanges radiatifs entre plusieurs surfaces opaques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Simone MATTEÏ : Professeur à l’Université de Bourgogne (IUT Le Creusot) - Laboratoire Laser et Traitement des Matériaux. LTm. EA 2976
INTRODUCTION
L’évaluation précise des transferts thermiques, et en particulier radiatifs, est nécessaire dans de nombreux cas, citons pour exemples le contrôle des températures de pièces placées dans un four en vue d’un traitement thermique, ou encore l’évaluation des pertes thermiques d’un habitat dans le but d’améliorer l’isolation, et donc d’économiser de l’énergie. Il a longtemps été considéré que les échanges radiatifs étaient prépondérants à hautes températures, puisqu’en effet le flux émis par une surface est proportionnel à sa température à la puissance quatrième. Cependant, même à température ambiante, les échanges radiatifs ne sont pas à négliger. Pour ce domaine de température, les échanges par convection et les échanges radiatifs peuvent être du même ordre de grandeur : par exemple, pour un coefficient d’échange par convection de 5 W · m – 2 · K –1, le flux surfacique perdu par convection par une paroi noire à la température de 25 oC dans une ambiance à 20 oC est de 25 W · m – 2, tandis que le flux surfacique échangé par rayonnement avec les parois environnant la surface, si elles sont à 20 oC, est de 29 W · m – 2.
Tout corps, quelle que soit sa température, émet un rayonnement électromagnétique. Dans le cas du rayonnement dit thermique, ne sont pris en compte que les transformations d’énergie interne en énergie radiative (phénomène d’émission) ou vice versa (phénomène d’absorption). Une des caractéristiques intrinsèques de ce rayonnement est sa fréquence, qui reste invariante tout au long de la propagation de l’onde ; par contre la longueur d’onde dépend du milieu de propagation. Il serait donc préférable d’utiliser la fréquence pour repérer « la nature spectrale » du rayonnement. Malheureusement, dans la pratique, la longueur d’onde est utilisée. Pour ne pas aller à l’encontre des termes usuels, nous ne considérons dans cet article que la longueur d’onde du rayonnement électromagnétique dans le vide ou dans un milieu d’indice de réfraction pratiquement égal à 1 (cas des gaz tels que N2 , O2 , air, etc.). Les températures courantes allant d’environ 80 K à 6 000 K, le domaine usuel du rayonnement thermique s’étend du visible à l’infrarouge moyen, soit de 0,3 µm à 50 µm.
Cet article concerne uniquement le rayonnement de matériaux opaques, c’est‐à‐dire de matériaux dont l’épaisseur est telle qu’aucune fraction du rayonnement incident n’est transmise. Cette épaisseur dépend non seulement de la longueur d’onde considérée et de la nature du matériau, mais aussi de son état de surface. Les surfaces sont pratiquement toujours rugueuses ou recouvertes d’impuretés ou d’oxydes, par conséquent, pour un grand nombre de matériaux et pour le domaine de longueur d’onde correspondant au rayonnement thermique, la profondeur de pénétration d’un rayonnement incident (du nanomètre au millimètre) est négligeable par rapport aux dimensions de l’échantillon considéré : les phénomènes de réflexion, d’absorption et d’émission peuvent donc être assimilés à « des phénomènes de surface », faisant donc intervenir les propriétés de la surface contrairement à la conduction de la chaleur qui dépend des caractéristiques du matériau massif. Il est indispensable de connaître les paramètres radiatifs si on veut déterminer les échanges radiatifs entre plusieurs surfaces. Or il n’existe pas de loi de comportement global des propriétés radiatives en fonction de la nature du matériau, de sa température, de la longueur d’onde et de son état de surface 2. De plus, on ne trouve pas dans la littérature de tables exhaustives de ces caractéristiques. La détermination exacte des transferts radiatifs nécessite donc la mesure des propriétés radiatives in situ, ou en laboratoire, dans des conditions proches des conditions réelles. Cependant, il est possible, analytiquement, d’obtenir une estimation de ces transferts en admettant un certain nombre d’hypothèses simplificatrices concernant les propriétés radiatives. C’est le but que nous nous sommes fixé à travers cet article : proposer des méthodes d’estimation d’échanges radiatifs entre plusieurs surfaces opaques 3.
Avec l’augmentation des performances des ordinateurs, il est possible de modéliser finement des situations complexes sans aucune hypothèse sur les propriétés radiatives, mais l’exactitude du résultat obtenu est surbordonnée à l’exactitude des paramètres entrés dans le modèle, et un calcul numérique n’est donc pas forcément plus fiable qu’un calcul analytique même approché.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Conclusion
Actuellement, pour un nombre croissant d’applications concrètes, la prise en compte des transferts radiatifs devient indispensable, que ce soit pour les basses températures (quelques kelvins), ou pour les températures élevées (3 000 à 4 000 K).
Un exemple de situation pour laquelle la connaissance des flux radiatifs échangés est nécessaire est celui de la détermination de la température par thermographie. Cette technique de mesure non destructive est de plus en plus répandue. Cependant une caméra infrarouge est un capteur de flux, et la conversion température-flux nécessite non seulement de connaître les émissivités des différents points de la scène visée, mais encore d’évaluer les flux réfléchis par des éléments de la scène, qui proviennent de sources qui sont hors du champ de visée et qui parviennent à la caméra .
Les équations de bilans radiatifs sont bien connues et, avec les performances croissantes des moyens informatiques et la diminution de leur coût, l’évaluation des échanges radiatifs pour des systèmes à géométrie complexe et dont les surfaces ont des propriétés radiatives quelconques devrait être effectuée de plus en plus facilement, mais, pour donner des résultats fiables, il faut entrer dans le calculateur des valeurs de paramètres radiatifs. Or, ces paramètres dépendent d’un grand nombre de facteurs. La connaissance de la valeur de ces paramètres dans une situation donnée et pour un état de surface particulier est pratiquement impossible. Il existe très peu de montages permettant de déterminer l’émissivité in situ. En ce qui concerne la réflectivité et sans aucune hypothèse simplificatrice, le paramètre intervenant dans les équations est la réflectivité bidirectionnelle, dont la détermination est une tâche quasi herculéenne. Cependant dans un grand nombre de cas, une estimation peut être suffisante, et il peut être vain de se lancer dans un calcul...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - KRIEBEL (K.T.) - On the limited validity of reciprocity in measured BRDFs. - Remote Sensing of Environment, 58, 1, p. 52-62, oct. 1996.
-
(2) - MALAPLATE (A.), NERRY (F.), STOLL (M.P.), GUILLAME (B.), BRIOTTET (X.) - Combined field [3-5 µm] and [8-14 µm] infrared imaging : approaches to extracting target’s bi-directional reflectivity and emissivity, - in Proc. ESO/SPIE Europto European Symposium on Remote Sensing, Toulouse, France, 17-21, sept. 2001.
-
(3) - FORD (J.N.), TANG (K.), BUCKIUS (R.), FOURIER (O.) - Transform infrared system measurement of the bidirectional reflectivity of diffuse and grooved surfaces. - Journal of Heat Transfer, 117, no 4, p. 955-962 (1995).
-
(4) - MODEST (M.F.) - Radiative Heat Transfer, (Transfert de chaleur par rayonnement). - 832 p. McGraw-Hill International Editions 2, New York 10121-2298 (1993).
-
(5) - HLADIK (J.) - Métrologie des propriétés thermophysiques des matériaux. - Masson, 349 p., Paris (1990).
-
...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive