Présentation
EnglishRÉSUMÉ
La représentation mathématique SEAQT (thermodynamique quantique de la plus forte hausse entropique) , issue de l’approche « non orthodoxe » de la thermodynamique quantique intrinsèque IQT, permet la modélisation des dynamiques non unitaires de relaxation et de décohérence ainsi que des processus de non-équilibre des systèmes chimiques réactifs et non réactifs depuis l’échelle microscopique jusqu’à l’échelle macroscopique. Mais auparavant, on peut se poser la question d’une dynamique non linéaire de type émergente ou fondamentale dans le monde du non-équilibre.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Michael VON SPAKOVSKY : Professeur et Directeur Center for Energy Systems Research, ME Department, Virginia Tech, Blacksburg, VA, États-Unis
INTRODUCTION
Même si elle est désignée comme un serpent de mer, la recherche sur l’origine et la nature profonde du second principe de la thermo-dynamique a connu un nouvel essor durant les trois ou quatre dernières décennies. Ce qui en ressort est le champ de la thermodynamique quantique, qui inclut les théories des systèmes quantiques ouverts et de « typicality », et, à partir de ces approches, le second principe de la thermodynamique émergeant de l’approche quantique (mécanique quantique). Une théorie alternative est celle de la thermodynamique quantique intrinsèque (IQT), qui considère le second principe comme fondamental. Le support mathématique de IQT, ainsi que la thermodynamique quantique de la plus forte hausse entropique (SEAQT), constitue l’essentiel de cet article avec application aux systèmes réactifs ou non depuis l’échelle microscopique jusqu’à l’échelle macroscopique.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Émergent contre fondamental
2.1 Dynamique non linéaire émergente
L’introduction des termes non linéaires dans le formalisme de von Neumann n’est pas nouvelle ni très originale pour IQT et sa représentation mathématique SEAQT. Les modifications non linéaires de l’équation du mouvement de von Neumann sont apparues depuis longtemps dans la littérature et sont le résultat de deux approches essentiellement distinctes, l’une fondamentale, l’autre émergente. L’approche la plus connue, dominante et largement acceptée est celle dans laquelle les termes non linéaires apparaissent quand la description fondamentale, qui obéit à l’équation du mouvement de von Neumann stricte, est coarse grained comme dans la construction de la hiérarchie quantique BBGKY (Bogolioubov, Born, Green, Kirkwood et Yvon) des équations des opérateurs de densité réduite basé sur une seule particule ou deux particules ou trois particules… Dans de telles descriptions coarse grained, les opérateurs de densité réduite obéissent aux équations de von Neumann, avec des termes dissipatifs non linéaires additionnels. Par exemple, l’opérateur de densité réduite basé sur une seule particule obéit à la version quantique bien connue de l’équation de Boltzmann classique, à savoir l’équation de Uehling-Uhlenbeck-Boltzmann . Dans ces approches, l’irréversibilité est une conséquence immédiate de la procédure coarse graining. Les équations dynamiques satisfont le théorème H ; ou plus précisément, ce dernier résulte des précédentes. Ainsi, ces équations conduisent à une augmentation monotone de l’entropie de von Neumann ; et l’irréversibilité est le résultat...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Émergent contre fondamental
BIBLIOGRAPHIE
-
(1) - EINSTEIN (A.), PODOLSKY (B.), ROSEN (N.) - Can quantum-mechanical description of physical reality be considered complete ? - Physical Review, vol. 47, p. 777-780 (1935).
-
(2) - LOSCHMIDT (J.) - * - Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss., vol. 73, p. 128-142 (1876).
-
(3) - VON NEUMANN (J.) - Mathematische grundlagen der quantenmechanik. - Springer, 1932, Mathematical Foundations of Quantum Mechanics, Engl. transl. of the 1932 German edition by BEYER (R.T.), Princeton University Press, p. 295-346 (1955).
-
(4) - SCHLOSSHAUER (M.) - Decoherence, the measurement problem, and interpretations of quantum mechanics. - Reviews of Modern Physics, vol. 76, p. 1267-1305, 23 fév. 2005.
-
(5) - EVERETT (H.) - Theory of the universal wavefunction. - Ph. D. doctoral dissertation, Dept. of Physics, Princeton Univ., Princeton, NJ (1956).
-
...
ANNEXES
Center for Energy Systemp Research, Mechanical Engineering Department Virginia Tec http://www.me.vt.edu/CESR
HAUT DE PAGECet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive