Présentation
EnglishAuteur(s)
-
André LALLEMAND : Ingénieur, Docteur ès sciences - Professeur émérite des universités. Ancien directeur du département de Génie énergétique de l'INSA de Lyon
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les compressions et détentes des fluides compressibles, gaz ou vapeurs, sont des opérations fondamentales dans le fonctionnement des machines thermiques telles que les machines frigorifiques ou les moteurs, que ceux-ci soient à combustion interne alternatifs (moteurs à essence et moteurs Diesel) ou à flux continu (turbines à gaz) ou à apport énergétique externe comme les turbines à vapeur. Dans les moteurs à combustion interne les deux opérations se présentent successivement, alors que dans le cas des turbines à vapeur on ne trouvera que la détente et dans les machines frigorifiques courantes que la compression.
Ces opérations correspondent à des transformations ouvertes d’un système, au sens thermodynamique du terme, mettant en jeu toujours de l’énergie mécanique et, selon les cas, de l’énergie thermique. En effet, la recherche de la production maximale de travail au cours d’une détente de gaz ou celle de la consommation minimale d’énergie mécanique pour une compression nécessite, non seulement de chercher à se rapprocher au maximum d’un processus réversible (deuxième principe de la thermodynamique), mais également de mettre en jeu des échanges de chaleur particuliers (premier principe de la thermodynamique). Le cas le plus simple de transformation étant de type adiabatique, il convient de connaître quelle pénalité ce type d’évolution entraîne sur les performances des machines.
Cet article de thermodynamique appliquée a pour but d’obtenir des réponses à l’ensemble de ces questions, par une bonne connaissance des phénomènes de base et par une étude comparative des différents types de transformations envisageables et réalisables. Le développement de ces analyses met en œuvre les principes fondamentaux de la thermodynamique et les divers bilans correspondants, dont les bilans d’énergie et d’exergie. Il débouche sur la définition de divers rendements aux significations particulières et au chiffrage de l’intérêt d’un type de compression ou de détente par rapport à un autre.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Étude particulière des compressions réfrigérées
Comme l’ont mis en évidence les développements précédents et particulièrement la figure 16, les compressions refroidies consomment moins d’énergie mécanique que les compressions non ou peu refroidies. Ainsi, en pratique et dès que les puissances mises en œuvre seront conséquentes (quelques kilowatts), on refroidira le gaz en cours de compression. Deux types de refroidissement sont utilisés, séparément ou simultanément : le refroidissement continu ou réfrigération continue, d’une part, la réfrigération fractionnée, d’autre part.
Généralement, pour toute compression refroidie, le travail technique nécessaire à la compression réelle est comparé au travail de la compression polytropique associée, dont le coefficient polytropique k est compris entre 1 et γ . On peut également le comparer :
-
soit au travail de la compression isothermique réversible associée, si la réfrigération est continue ;
-
soit à des éléments de compression isentropique dans le cas d’une réfrigération fractionnée.
3.1 Réfrigération continue
La réfrigération continue consiste à refroidir le gaz au cours de sa variation de pression. C’est un mode de refroidissement très employé dans le cas de tous les compresseurs volumétriques. On le rencontre moins fréquemment dans les compresseurs centrifuges et il est rare, pour des raisons technologiques de construction, dans les compresseurs axiaux.
À la limite, et théoriquement, la réfrigération continue conduit à une compression isothermique réversible. Pratiquement, la température augmente malgré le refroidissement et l’évolution est irréversible.
Dans le cas d’une compression isothermique 1-2 T (figure 17) réversible ou non, le travail technique est égal, en module, à la quantité de chaleur évacuée par le fluide réfrigérant (eau ou air en général) – voir l’équation ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Étude particulière des compressions réfrigérées
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive